Het doel van dit handboek is om mensen kennis te laten maken met het concept van voedselbossen en om hen handvatten te geven voor het realiseren van een basisontwerp van een voedselbosecosysteem en het beheer daarvan. Dit handboek betreft een beknopte praktische handleiding. Voor uitgebreide theoretische achtergronden over voedselbossen in gematigd klimaat kan men literatuur raadplegen die wordt genoemd in subparagraaf 1.1: Theoretische achtergronden van voedselbossen.
MULTIFILE
Taste is a main driver in preferences and food choices. Humans are predispositioned to prefer sweet and salty tastes and reject bitter and sour tastes, therefore bitter taste is often thought to cause the rejection of vegetables by children. In our study we investigated the taste and fattiness intensity for different preparation methods for ten vegetables. Our results showed that: Frequently consumed vegetables have almost no taste Sweetness is the most intensive taste in vegetables, followed by sourness and bitterness, saltiness is the least intensive taste Vegetable preparation method influences taste intensity
Agricultural/horticultural products account for 9% of Dutch gross domestic product. Yearly expansion of production involves major challenges concerning labour costs and plant health control. For growers, one of the most urgent problems is pest detection, as pests cause up to 10% harvest loss, while the use of chemicals is increasingly prohibited. For consumers, food safety is increasingly important. A potential solution for both challenges is frequent and automated pest monitoring. Although technological developments such as propeller-based drones and robotic arms are in full swing, these are not suitable for vertical horticulture (e.g. tomatoes, cucumbers). A better solution for less labour intensive pest detection in vertical crop horticulture, is a bio-inspired FW-MAV: Flapping Wings Micro Aerial Vehicle. Within this project we will develop tiny FW-MAVs inspired by insect agility, with high manoeuvrability for close plant inspection, even through leaves without damage. This project focusses on technical design, testing and prototyping of FW-MAV and on autonomous flight through vertically growing crops in greenhouses. The three biggest technical challenges for FW-MAV development are: 1) size, lower flight speed and hovering; 2) Flight time; and 3) Energy efficiency. The greenhouse environment and pest detection functionality pose additional challenges such as autonomous flight, high manoeuvrability, vertical take-off/landing, payload of sensors and other equipment. All of this is a multidisciplinary challenge requiring cross-domain collaboration between several partners, such as growers, biologists, entomologists and engineers with expertise in robotics, mechanics, aerodynamics, electronics, etc. In this project a co-creation based collaboration is established with all stakeholders involved, integrating technical and biological aspects.