This paper lays the groundwork for building a communication model that will help cultivate communities of practice through the use of strategic communications. Theoretical models describing communities of practice in organizational knowledge generation typically have three main actors; the individual, the community and the organization. These models usually mention the necessity for their interaction, but are never specific about how this should be done. Furthermore, there has been little research on how communication processes can affect the relationship between the three actors in the model. This paper proposes that the interaction between the community, the individual members of the community and the organization must be facilitated and promoted through specific strategic communications in order to guarantee the success of the community. Topics such as knowledge sharing, knowledge building and organizational learning are looked at through a communication perspective.
DOCUMENT
In this chapter, we propose that the democracy we wish to see out in the world is influenced by the quality of our own “inner democracies”—that is: the quality of the democracies among and between the selves or voices in the landscape of the self. We must find ways out of the I-prisons we experience and perpetuate. With this in mind, we propose that ”writing the self,” a method whereby creative, expressive, and reflective writing is used to cultivate an internal dialogue and construct a new identity narrative (Lengelle, 2014), can assist in reshaping our stories about ”the Other and ourselves” and can contribute to personal and cultural healing and reconciliation. The inner dialogue reconciled is foundational for the external dialogue at the heart of global citizenship within education. Indeed, as Schellhammer argues, we must cultivate the self in order to become inter-culturally competent, and this includes facing shadow aspects through truthful dialogues with the self and caring for the self. https://doi.org/10.1007/978-3-319-62861-5_6 LinkedIn: https://www.linkedin.com/in/reinekke-lengelle-phd-767a4322/
MULTIFILE
The methodology of biomimicry design thinking is based on and builds upon the overarching patterns that all life abides by. “Cultivating cooperative relationships” within an ecosystem is one such pattern we as humans can learn from to nurture our own mutualistic and symbiotic relationships. While form and process translations from biology to design have proven accessible by students learning biomimicry, the realm of translating biological functions in a systematic approach has proven to be more difficult. This study examines how higher education students can approach the gap that many companies in transition are struggling with today; that of thinking within the closed loops of their own ecosystem, to do good without damaging the system itself. Design students should be able to assess and advise on product design choices within such systems after graduation. We know when tackling a design challenge, teams have difficulties sifting through the mass of information they encounter, and many obstacles are encountered by students and their professional clients when trying to implement systems thinking into their design process. While biomimicry offers guidelines and methodology, there is insufficient research on complex, systems-level problem solving that systems thinking biomimicry requires. This study looks at factors found in course exercises, through student surveys and interviews that helped (novice) professionals initiate systems thinking methods as part of their strategy. The steps found in this research show characteristics from student responses and matching educational steps which enabled them to develop their own approach to challenges in a systems thinking manner. Experiences from the 2022 cohort of the semester “Design with Nature” within the Industrial Design Engineering program at The Hague University of Applied Sciences in the Netherlands have shown that the mixing and matching of connected biological design strategies to understand integrating functions and relationships within a human system is a promising first step. Stevens LL, Whitehead C, Singhal A. Cultivating Cooperative Relationships: Identifying Learning Gaps When Teaching Students Systems Thinking Biomimicry. Biomimetics. 2022; 7(4):184. https://doi.org/10.3390/biomimetics7040184
DOCUMENT
Sea Lettuce, Ulva spp. is a versatile and edible green seaweed. Ulva spp is high in protein, carbohydrates and lipids (respectively 7%-33%; 33%-62% and 1%-3% on dry weight base [1, 2]) but variation in these components is high. Ulva has the potential to produce up to 45 tons DM/ha/year but 15 tons DM/ha/year is more realistic.[3, 4] This makes Ulva a possible valuable resource for food and other applications. Sea Lettuce is either harvested wild or cultivated in onshore land based aquaculture systems. Ulva onshore aquaculture is at present implemented only on a few locations in Europe on commercial scale because of limited knowledge about Ulva biology and its optimal cultivation systems but also because of its unfamiliarity to businesses and consumers. The objective of this project is to improve Ulva onshore aquaculture by selecting Ulva seed material, optimizing growth and biomass production by applying ecophysiological strategies for nutrient, temperature, microbiome and light management, by optimizing pond systems eg. attached versus free floating production and eventually protoype product development for feed, food and cosmetics.
Dit project richt zich op de ontwikkeling van de biotechnologische en chemische procesvoering om op basis van mycelium een alternatief voor leer te produceren. In vergelijking met leer is het voordeel van mycelium dat geen runderen nodig zijn, de productie kan plaatsvinden onder industriële condities en met gebruik van reststromen, de CO2 uitstoot alsook hoeveelheid afval verlaagd wordt, en het gebruik van toxische stoffen zoals chroom wordt vervangen door biobased alternatieven. In het project zullen de procescondities worden bepaald die leiden tot de vorming van optimaal mycelium. Daartoe zullen twee verschillende schimmels worden gekweekt in bioreactoren bij de Hogeschool Arnhem Nijmegen (HAN), waarbij specifiek de effecten van de procescondities (temperatuur, pH, shear, beluchting) en de samenstelling van het kweekmedium op groei van het mycelium en materiaal eigenschappen zullen worden onderzocht. De meest optimale condities zullen vervolgens worden opgeschaald. Op het op deze wijze verkregen materiaal zal Mylium BV een aantal nabehandelingsstappen uitvoeren om de sterkte, elasticiteit, en duurzaamheid van het product te vergroten. Daartoe worden biobased plasticizers, cross-linkers en/of flexibility agents gebruikt. Het resulterende eindproduct zal middels specifiek fysieke testen vergeleken worden met leer alsook worden voorgelegd aan mogelijke klanten. Indien beide resultaten positief zijn kan het betreffende proces na het project verder worden opgeschaald voor toepassing naar de markt.
The valorization of biowaste, by exploiting side stream compounds as feedstock for the sustainable production of bio-based materials, is a key step towards a more circular economy. In this regard, chitin is as an abundant resource which is accessible as a waste compound of the seafood industry. From a commercial perspective, chitin is chemically converted into chitosan, which has multiple industrial applications. Although the potential of chitin has long been established, the majority of seafood waste containing chitin is still left unused. In addition, current processes which convert chitin into chitosan are sub-optimal and have a significant impact on the environment. As a result, there is a need for the development of innovative methods producing bio-based products from chitin. This project wants to contribute to these challenges by performing a feasibility study which demonstrates the microbial bioconversion of chitin to polyhydroxyalkanoates (PHAs). Specifically, the consortium will attempt to cultivate and engineer a recently discovered bacterium Chi5, so that it becomes able to directly produce PHAs from chitin present in solid shrimp shell waste. If successful, this project will provide a proof-of-concept for a versatile microbial production platform which can contribute to: i) the valorization of biowaste from the seafood industry, ii) the efficient utilization of chitin as feedstock, iii) the sustainable and (potentially low-cost) production of PHAs. The project consortium is composed of: i) Van Belzen B.V., a Dutch shrimp trading company which are highly interested in the valorization of their waste streams, hereby making their business model more profitable and sustainable. ii) AMIBM, which have recently isolated and characterized the Chi5 marine-based chitinolytic bacterium and iii) Zuyd, which will link aforementioned partners with students in creating a novel collaboration which will stimulate the development of students and the translation of academic knowledge to a feasible application technology for SME’s.