Free newspapers may offer different news contents to different audiences, when compared with traditional, paid-for newspapers, but they, nevertheless, concentrate on news, and thereby provide society with information on current affairs. These papers have seen circulation rise until 2008; after that, a decline set in, leading to closures and often a monopoly situation in the mature European newspaper markets covered in our research. Free newspapers seem to follow a typical life cycle pattern, moving from growth to maturity, and to saturation and decline. Diversification strategies – home-delivery, weekend, sports, afternoon, and financial – have been disappointing so far. There is no evidence, however, of total extinction, indicating that there is room for at least one title – possibly two – in every market. The situation in the surveyed markets also suggests that a free newspaper may be a ‘natural’ monopoly.
Cities are constantly in transition. Spatial production worldwide is generated by governments, business, developers, informal settlers, et cetera; sometimes cities expand, but increasingly there is a process of reurbanisation of existing urban patterns contronted with deterioration, dysfunctionality, or obsolescence. In many situations, funding, power and technology determine how the course of urbanisation. Communities, groups and individuals with limited access to funding, power and technology need empowerment to exercise their right to shape and improve their own evironment, while respecting health, equity and ecology. The research centre for Smart Urban Redesign (SURD) at Zuyd University of Applied Sciences seeks to work on this empowerment for communities. This study presents SURD’s approach to neighbourhood revitalisation.
Paper sludge contains papermaking mineral additives and fibers, which could be reused or recycled, thus enhancing the circularity. One of the promising technologies is the fast pyrolysis of paper sludge, which is capable of recovering > 99 wt.% of the fine minerals in the paper sludge and also affording a bio-liquid. The fine minerals (e.g., ‘circular’ CaCO3) can be reused as filler in consumer products thereby reducing the required primary resources. However, the bio-liquid has a lower quality compared to fossil fuels, and only a limited application, e.g., for heat generation, has been applied. This could be significantly improved by catalytic upgrading of the fast pyrolysis vapor, known as an ex-situ catalytic pyrolysis approach. We have recently found that a high-quality bio-oil (mainly ‘bio-based’ paraffins and low-molecular-weight aromatics, carbon yield of 21%, and HHV of 41.1 MJ kg-1) was produced (Chem. Eng. J., 420 (2021), 129714). Nevertheless, catalyst deactivation occurred after a few hours’ of reaction. As such, catalyst stability and regenerability are of research interest and also of high relevance for industrial implementation. This project aims to study the potential of the add-on catalytic upgrading step to the industrial fast pyrolysis of paper sludge process. One important performance metric for sustainable catalysis in the industry is the level of catalyst consumption (kgcat tprod-1) for catalytic pyrolysis of paper sludge. Another important research topic is to establish the correlation between yield and selectivity of the bio-chemicals and the catalyst characteristics. For this, different types of catalysts (e.g., FCC-type E-Cat) will be tested and several reaction-regeneration cycles will be performed. These studies will determine under which conditions catalytic fast pyrolysis of paper sludge is technically and economically viable.
A transition to a circular economy is needed to revolutionize the construction sector and make it more sustainable for present and future generations. While the construction industry and the production of construction materials contribute to environmental pollution, they also offer great potential for addressing many environmental problems. Sheet materials are engineered wood boards that are produced from recycled or solid wood where an adhesive is used to bind the particles together, predominantly used in: Furniture manufacturing, Flooring application, Roofing, Wall sheathing. The most common binder for boards is urea-formaldehyde. Other binders may be used depending on the grade of board and its intended end-use. For example, melamine urea-formaldehyde, phenolic resins and polymeric diphenylmethane diisocyanate (PMDI) are generally used in boards that require improved moisture resistance. Formaldehyde is classified in the in the European Union as a carcinogen and it carries the hazard statement 'suspected of causing cancer'. In this project mycelium composites are developed as a formaldehyde-free, fully natural and biodegradable material with high potential to substitute these hazardous materials. The heat-press process, the feasibility of which was evaluated in a previous Kiem HBO project, is to be further developed towards a process where mycelium sheets with different thicknesses will be obtained. This is considered as a fundamental step to increase the material approachability to the market. Different Material manufacturing techniques are also considered to enable the increase of sample thicknesses and volume. Moreover, a business study will be incorporated to allow further understanding of the material market potential. The consortium composition of V8 Architects, QbiQ, Fairm, Verbruggen Paddestoelen BV, and CoEBBE merges different expertise and guarantees the consideration of the whole material production chain. The research will contribute to bring mycelium composites a step closer to the market, giving them visibility and increasing the possibility to a commercial breakthrough.
De toepassing van composiet materialen in de energie, transport en commodity sector heeft bijgedragen tot de reductie van CO2 emissies door minder vervoerd gewicht (vooral belangrijk voor de luchtvaart en wegtransport), lagere energieconsumptie voor de vervaardigingscyclus, en duurzamere producten (minimaal onderhoud). Naast reeds bestaande kleinere markten in verscheidene sectoren, zijn het met name de succesvolle toepassingen in de luchtvaartindustrie die intussen de weg plaveien voor grootschalige seriematige en reproduceerbare toepassingen in de automobiel, energieopslag, sportartikelen en commodities industrie. De beperkte recycleerbaarheid van Thermoset composieten is echter een groot probleem. Deze kunnen immers na uitharding niet opnieuw worden vormgegeven. Dit kan worden opgelost door de toepassing van thermoplastische composieten, gebaseerd op her-smeltbare en herbruikbare polymeercombinaties. Deze nieuwe klasse van composiet is dan ook veelbelovend en vormt een zeer actuele taak van onderzoek. Gangbare productietechnieken zoals persen en consolideren kennen echter grote afvalvolumes door vorm-uitsnijding en uitval. Modernere technieken zoals continuvezel 3-D printen en tape laying kunnen dit probleem zeer effectief oplossen. Daarnaast kunnen de daarmee geproduceerde 3-D legsels als verstijvers of verstevigingen fungeren voor de klassieke, geperste thermoplastische schalen in overmoulding of co-consolidatie stappen. Deze combinatie zal bovendien de weg openen naar de integrale vervaardiging van grote verstijfde delen, verdere mogelijkheden tot ontwerpoptimalisatie en méér productiemogelijkheden voor het MKB. Uitdagingen zijn hierbij: beter proces en materiaalgedag begrip, uitgebreide processimulaties, gespecialiseerde hardware en regelsystemen voor snellere, betere en groenere productie, efficiënte integratie van robotica en perifere systemen, toetsing aan de praktijk, disseminatie en waarborging van de gegenereerde kennis en bewaking van milieu-gerelateerde prestatie indicatoren. Met een uitgebreid consortium van 3 kennisinstellingen en 7 MKB bedrijven, beoogt dit project hier antwoord op te geven.