Learning analytics is the analysis of student data with the purpose of improving learning. However, the process of data cleaning remains underexposed within learning analytics literature. In this paper, we elaborate on choices made in the cleaning process of student data and their consequences. We illustrate this with a case where data was gathered during six courses taught via Moodle. In this data set, only 21% of the logged activities were linked to a specific course. We illustrate possible choices in dealing with missing data by applying the cleaning process twelve times with different choices on copies of the raw data. Consequently, the analysis of the data shows varying outcomes. As the purpose of learning analytics is to intervene based on analysis and visualizations, it is of utmost importance to be aware of choices made during data cleaning. This paper's main goal is to make stakeholders of (learning) analytics activities aware of the fact that choices are made during data cleaning have consequences on the outcomes. We believe that there should be transparency to the users of these outcomes and give them a detailed report of the decisions made.
DOCUMENT
During the past two decades the implementation and adoption of information technology has rapidly increased. As a consequence the way businesses operate has changed dramatically. For example, the amount of data has grown exponentially. Companies are looking for ways to use this data to add value to their business. This has implications for the manner in which (financial) governance needs to be organized. The main purpose of this study is to obtain insight in the changing role of controllers in order to add value to the business by means of data analytics. To answer the research question a literature study was performed to establish a theoretical foundation concerning data analytics and its potential use. Second, nineteen interviews were conducted with controllers, data scientists and academics in the financial domain. Thirdly, a focus group with experts was organized in which additional data were gathered. Based on the literature study and the participants responses it is clear that the challenge of the data explosion consist of converting data into information, knowledge and meaningful insights to support decision-making processes. Performing data analyses enables the controller to support rational decision making to complement the intuitive decision making by (senior) management. In this way, the controller has the opportunity to be in the lead of the information provision within an organization. However, controllers need to have more advanced data science and statistic competences to be able to provide management with effective analysis. Specifically, we found that an important skill regarding statistics is the visualization and communication of statistical analysis. This is needed for controllers in order to grow in their role as business partner..
DOCUMENT
Big data analytics received much attention in the last decade and is viewed as one of the next most important strategic resources for organizations. Yet, the role of employees' data literacy seems to be neglected in current literature. The aim of this study is twofold: (1) it develops data literacy as an organization competency by identifying its dimensions and measurement, and (2) it examines the relationship between data literacy and governmental performance (internal and external). Using data from a survey of 120 Dutch governmental agencies, the proposed model was tested using PLS-SEM. The results empirically support the suggested theoretical framework and corresponding measurement instrument. The results partially support the relationship of data literacy with performance as a significant effect of data literacy on internal performance. However, counter-intuitively, this significant effect is not found in relation to external performance.
MULTIFILE
Citizens regularly search the Web to make informed decisions on daily life questions, like online purchases, but how they reason with the results is unknown. This reasoning involves engaging with data in ways that require statistical literacy, which is crucial for navigating contemporary data. However, many adults struggle to critically evaluate and interpret such data and make data-informed decisions. Existing literature provides limited insight into how citizens engage with web-sourced information. We investigated: How do adults reason statistically with web-search results to answer daily life questions? In this case study, we observed and interviewed three vocationally educated adults searching for products or mortgages. Unlike data producers, consumers handle pre-existing, often ambiguous data with unclear populations and no single dataset. Participants encountered unstructured (web links) and structured data (prices). We analysed their reasoning and the process of preparing data, which is part of data-ing. Key data-ing actions included judging relevance and trustworthiness of the data and using proxy variables when relevant data were missing (e.g., price for product quality). Participants’ statistical reasoning was mainly informal. For example, they reasoned about association but did not calculate a measure of it, nor assess underlying distributions. This study theoretically contributes to understanding data-ing and why contemporary data may necessitate updating the investigative cycle. As current education focuses mainly on producers’ tasks, we advocate including consumers’ tasks by using authentic contexts (e.g., music, environment, deferred payment) to promote data exploration, informal statistical reasoning, and critical web-search skills—including selecting and filtering information, identifying bias, and evaluating sources.
LINK
ackground and aim – Driven by new technologies and societal challenges, futureproof facility managers must enable sustainable housing by combining bricks and bytes into future-proof business support and workplace concepts. The Hague University of Applied Sciences (THUAS) acknowledges the urgency of educating students about this new reality. As part of a large-scale two-year study into sustainable business operations, a living lab has been created as a creative space on the campus of THUAS where (novel) business activities and future-proof workplace concepts are tested. The aim is to gain a better understanding amongst students, lecturers, and the university housing department of bricks, bytes, behavior, and business support. Results – Based on different focal points the outcomes of this research present guidelines for facility managers how data-driven facility management creates value and a better understanding of sustainable business operations. In addition, this practice based research presents how higher education in terms of taking the next step in creating digitized skilled facility professionals can add value to their curriculum. Practical or social implications – The facility management profession has an important role to play in the mitigation of sustainable and digitized business operations. However, implementing high-end technology within the workplace can help to create a sustainable work environment and better use of the workplace. These developments will result in a better understanding of sustainable business operations and future-proof capabilities. A living lab is the opportunity to teach students to work with big data and provides a playground for them to test their circular workplace, business support designs, and smart building technologies.
DOCUMENT
Cleanliness is one of the key determinants of overall customer satisfaction in train stations. Customers’ perception of cleanliness is not limited to cleaning only but depends on multiple predictors. A better understanding of these predictors may contribute to the optimisation of perceived cleanliness in train stations. The current study was designed to examine how objective predictors (measures of cleaning quality), subjective predictors (e.g., customers’ perception of lighting, scent, staff), and demographic variables relate to perceived cleanliness in train stations. Data on cleaning quality were gathered by trained cleaning inspectors and data on subjective predictors of cleanliness were obtained through surveys collected at 25 train stations in the Netherlands (N = 19.206). Data were examined using correlation and regression analysis. Positive and significant correlates of perceived cleanliness in train stations were found, including: perception of scent, lighting, colour, and staff. In regression analysis, customers’ perception of scent and lighting appeared to be powerful predictors of perceived cleanliness. These findings underline that customers’ perception of cleanliness is not only influenced by cleaning quality, but also by other predictors, such as scent, lighting, colour, and staff behaviour.
DOCUMENT
Brochure from the Inauguration of Klaas Dijkstra, professor Computer Vision and Data Science
DOCUMENT
Machine learning models have proven to be reliable methods in classification tasks. However, little research has been done on classifying dwelling characteristics based on smart meter & weather data before. Gaining insights into dwelling characteristics can be helpful to create/improve the policies for creating new dwellings at NZEB standard. This paper compares the different machine learning algorithms and the methods used to correctly implement the models. These methods include the data pre-processing, model validation and evaluation. Smart meter data was provided by Groene Mient, which was used to train several machine learning algorithms. The models that were generated by the algorithms were compared on their performance. The results showed that Recurrent Neural Network (RNN) 2performed the best with 96% of accuracy. Cross Validation was used to validate the models, where 80% of the data was used for training purposes and 20% was used for testing purposes. Evaluation metrices were used to produce classification reports, which can indicate which of the models work the best for this specific problem. The models were programmed in Python.
DOCUMENT
The main goal of this study was to investigate if a computational analyses of text data from the National Student Survey (NSS) can add value to the existing, manual analysis. The results showed the computational analysis of the texts from the open questions of the NSS contain information which enriches the results of standard quantitative analysis of the NSS.
DOCUMENT
Green data centres are the talk of the day. But who in fact is involved in developing green data centres? What is their contribution? And what does this contribution constitute in practical terms? This article states which stakeholders are involved in green data centres in the Netherlands, what their involvement is and what effect their involvement has. The article starts by giving the definitions for sustainability and by determining the stakeholders and their possibilities in this field. Next, we examine the actual impact of each stakeholder for arriving at greener data centres. This leads to a number of conclusions for achieving a larger degree of sustainability.
DOCUMENT