Analyzing historical decision-related data can help support actual operational decision-making processes. Decision mining can be employed for such analysis. This paper proposes the Decision Discovery Framework (DDF) designed to develop, adapt, or select a decision discovery algorithm by outlining specific guidelines for input data usage, classifier handling, and decision model representation. This framework incorporates the use of Decision Model and Notation (DMN) for enhanced comprehensibility and normalization to simplify decision tables. The framework’s efficacy was tested by adapting the C4.5 algorithm to the DM45 algorithm. The proposed adaptations include (1) the utilization of a decision log, (2) ensure an unpruned decision tree, (3) the generation DMN, and (4) normalize decision table. Future research can focus on supporting on practitioners in modeling decisions, ensuring their decision-making is compliant, and suggesting improvements to the modeled decisions. Another future research direction is to explore the ability to process unstructured data as input for the discovery of decisions.
MULTIFILE
Abstract Despite the numerous business benefits of data science, the number of data science models in production is limited. Data science model deployment presents many challenges and many organisations have little model deployment knowledge. This research studied five model deployments in a Dutch government organisation. The study revealed that as a result of model deployment a data science subprocess is added into the target business process, the model itself can be adapted, model maintenance is incorporated in the model development process and a feedback loop is established between the target business process and the model development process. These model deployment effects and the related deployment challenges are different in strategic and operational target business processes. Based on these findings, guidelines are formulated which can form a basis for future principles how to successfully deploy data science models. Organisations can use these guidelines as suggestions to solve their own model deployment challenges.
DOCUMENT
During the past two decades the implementation and adoption of information technology has rapidly increased. As a consequence the way businesses operate has changed dramatically. For example, the amount of data has grown exponentially. Companies are looking for ways to use this data to add value to their business. This has implications for the manner in which (financial) governance needs to be organized. The main purpose of this study is to obtain insight in the changing role of controllers in order to add value to the business by means of data analytics. To answer the research question a literature study was performed to establish a theoretical foundation concerning data analytics and its potential use. Second, nineteen interviews were conducted with controllers, data scientists and academics in the financial domain. Thirdly, a focus group with experts was organized in which additional data were gathered. Based on the literature study and the participants responses it is clear that the challenge of the data explosion consist of converting data into information, knowledge and meaningful insights to support decision-making processes. Performing data analyses enables the controller to support rational decision making to complement the intuitive decision making by (senior) management. In this way, the controller has the opportunity to be in the lead of the information provision within an organization. However, controllers need to have more advanced data science and statistic competences to be able to provide management with effective analysis. Specifically, we found that an important skill regarding statistics is the visualization and communication of statistical analysis. This is needed for controllers in order to grow in their role as business partner..
DOCUMENT