Within the context of the Iliad project, the authors present early design mock-ups and resulting technical challenges for a 2D/3D/4D geo-data visualisation application focused on microparticle flows. The Iliad – Digital Twins of the Ocean project (EU Horizon 2020) aims to develop a ‘system of systems’ for creating cutting-edge digital twins of specific sea and ocean areas for diverse purposes related to their sustainable use and protection. One of the Iliad pilots addresses the topic of water quality monitoring by creating an application offering dynamic 2D and 3D visualisations of specifically identified microparticles, initially observed by buoys/sensors deployed at specific locations and whose subsequent flows are modelled by separate software. The main upcoming technical challenges concern the data-driven approach, where the application’s input data is completely obtained through external API-based services offering (near) real-time observed data from buoys/sensors and simulated data emanating from particle transport models
Political Wordgame is a website featuring an interactive data visualisation on the speech of Dutch politicians aired on the public broadcaster.
LINK
The purpose of this study was to analyse knowledge management research trends to understand the development of the field using a combination of scientometric, bibliometric, and visualisation techniques, subsequently developing a normative framework of knowledge management from the results.282 articles between the years 2010–2015 were retrieved, analysed, and visualised to produce the state of knowledge management during the selected timeframe. The results of this study provide a visualisation of the current research trends to understand the development of the knowledge management discipline. There are signals that the literature about knowledge management is progressing towards academic maturity. This study is one of the first studies to combine bibliometric and scientometric methods to assess productivity along with visualisation, and subsequently provide a knowledge management framework drawing from the results of these methods.
MULTIFILE
Organisations are increasingly embedding Artificial Intelligence (AI) techniques and tools in their processes. Typical examples are generative AI for images, videos, text, and classification tasks commonly used, for example, in medical applications and industry. One danger of the proliferation of AI systems is the focus on the performance of AI models, neglecting important aspects such as fairness and sustainability. For example, an organisation might be tempted to use a model with better global performance, even if it works poorly for specific vulnerable groups. The same logic can be applied to high-performance models that require a significant amount of energy for training and usage. At the same time, many organisations recognise the need for responsible AI development that balances performance with fairness and sustainability. This KIEM project proposal aims to develop a tool that can be employed by organizations that develop and implement AI systems and aim to do so more responsibly. Through visual aiding and data visualisation, the tool facilitates making these trade-offs. By showing what these values mean in practice, which choices could be made and highlighting the relationship with performance, we aspire to educate users on how the use of different metrics impacts the decisions made by the model and its wider consequences, such as energy consumption or fairness-related harms. This tool is meant to facilitate conversation between developers, product owners and project leaders to assist them in making their choices more explicit and responsible.
"Speak the Future" presents a novel test case at the intersection of scientific innovation and public engagement. Leveraging the power of real-time AI image generation, the project empowers festival participants to verbally describe their visions for a sustainable and regenerative future. These descriptions are instantly transformed into captivating imagery using SDXL Turbo, fostering collective engagement and tangible visualisation of abstract sustainability concepts. This unique interplay of speech recognition, AI, and projection technology breaks new ground in public engagement methods. The project offers valuable insights into public perceptions and aspirations for sustainability, as well as understanding the effectiveness of AI-powered visualisation and regenerative applications of AI. Ultimately, this will serve as a springboard for PhD research that will aim to understand How AI can serve as a vehicle for crafting regenerative futures? By employing real-time AI image generation, the project directly tests its effectiveness in fostering public engagement with sustainable futures. Analysing participant interaction and feedback sheds light on how AI-powered visualisation tools can enhance comprehension and engagement. Furthermore, the project fosters public understanding and appreciation of research. The interactive and accessible nature of "Speak the Future" demystifies the research process, showcasing its relevance and impact on everyday life. Moreover, by directly involving the public in co-creating visual representations of their aspirations, the project builds an emotional connection and sense of ownership, potentially leading to continued engagement and action beyond the festival setting. "Speak the Future" promises to be a groundbreaking initiative, bridging the gap between scientific innovation and public engagement in sustainability discourse. By harnessing the power of AI for collective visualisation, the project not only gathers valuable data for researchers but also empowers the public to envision and work towards a brighter, more sustainable future.