Dynamic energy contracts, offering hourly varying day-ahead prices for electricity, create opportunities for a residential Battery Energy Storage System (BESS) to not just optimize the self-consumption of solar energy but also capitalize on price differences. This work examines the financial potential and impact on the self-consumption of a residential BESS that is controlled based on these dynamic energy prices for PV-equipped households in the Netherlands, where this novel type of contract is available. Currently, due to the Dutch Net Metering arrangement (NM) for PV panels, there is no financial incentive to increase self-consumption, but policy shifts are debated, affecting the potential profitability of a BESS. In the current situation, the recently proposed NM phase-out and the general case without NM are studied using linear programming to derive optimal control strategies for these scenarios. These are used to assess BESS profitability in the latter cases combined with 15 min smart meter data of 225 Dutch households to study variations in profitability between households. It follows that these variations are linked to annual electricity demand and feed-in pre-BESS-installation. A residential BESS that is controlled based on day-ahead prices is currently not generally profitable under any of these circumstances: Under NM, the maximum possible annual yield for a 5 kWh/3.68 kW BESS with day-ahead prices as in 2023 is EUR 190, while in the absence of NM, the annual yield per household ranges from EUR 93 to EUR 300. The proposed NM phase-out limits the BESS’s profitability compared to the removal of NM.
DOCUMENT
Consumers expect product availability as well as product quality and safety in retail outlets. When designing or re-designing fruit and vegetables supply chain networks one has to take these demands into consideration next to traditional efficiency and responsiveness requirements. In food science literature, much attention has been paid to the development of Time-Temperature Indicators to monitor individually the temperature conditions of food products throughout distribution as well as quality decay models that are able to predict product quality based upon this information. This chapter discusses opportunities to improve the design and management of fruit and vegetables supply chain networks. If product quality in each step of the supply chain can be predicted in advance, good flows can be controlled in a pro-active manner and better chain designs can be established resulting in higher product availability, higher product quality, and less product losses in retail. This chapter works towards a preliminary diagnostic instrument, which can be used to assess supply chain networks on QCL (Quality Controlled Logistics). Findings of two exploratory case studies, one on the tomato chain and one on the mango chain, are presented to illustrate the value of this concept. Results show the opportunities and bottlenecks for quality controlled logistics depend on product—(e.g. variability in quality), process—(e.g. ability to use containers and sort on quality), network- (e.g. current level of cooperation), and market characteristics (e.g. higher prices for better products).
DOCUMENT
This research paper looks at a selection of science-fiction films and its connection with the progression of the use of television, telephone and print media. It also analyzes statistical data obtained from a questionnaire conducted by the research group regarding the use of communication media.
DOCUMENT