NECSTouR workshop and presentation for board of directors
DOCUMENT
Workpackage 8.1 of the IANOS project is dedicated to developing a community engagement strategy that can be applied in the use cases on the lighthouse islands (Ameland and Terceira) and the fellow islands (Lampedusa, Nisyros and Bora Bora). This report is the deliverable of WP8.1.Within this report an approach to designing a community engagement strategy is formulated that is rooted in scientific research and enriched by best practices from the light house islands and fellow islands.The report describes a general approach to designing a community engagement strategy, that consists of three parts. The first part is dedicated to assessing the situation and project that the community engagement strategy is dedicated to. It describes several factors that are rooted in literature on community engagement and psychological theories. Thesefactors should be assessed in order to be able to design an effective community engagement strategy. The results of this assessment will be used in the second part of the general approach, which describes a method for designing a community engagement strategy. This method is rooted in community engagement literature and draws heavily on some earlier EU projects. The method describes about ten items that together constitutethe strategy and that encompass all relevant issues that need to be addressed in designing community engagement. Finally, the third part of the general approach, describes the way the method and the assessment can be applied in a methodic and robust way. Although the general method is described as a theoretically based approach, it is substantiated not only by theoretical studies, but also by many reports on practical application of various community engagement efforts. In addition to that, all participantsfrom the islands have identified some best practices on community engagement from their own region and/or experience. These best practices are analysed according to the method of meta-analysis. The information from this meta-analysis is used to check the suitability of the general approach and leads to emphasizing those aspects of the approach that are identified as more important within the best practices.
MULTIFILE
DOCUMENT
The decarbonisation of the aviation industry requires strict regulation to align with the EU Green Deal, which aims to make the EU the world’s first climate-neutral region by 2050. EU regulations continuously evolve and impact the key performance indicators (KPIs) used to measure progress towards this ambitious objective. Supported by the Marie Skłodowska-Curie Actions (MSCA) programme, the AZERO project assesses airline reduction commitments to achieve net-zero carbon by 2050. It uses an interdisciplinary approach to map greenhouse gas (GHG) KPIs, evaluate actions taken, and simulate traffic scenarios to estimate feasibility using the System Dynamics method for the timeframes of 2030, 2040, and 2050. This advanced simulation method uses real airline emission data and environmental, social and governance (ESG) report commitments.
MULTIFILE
Decarbonisation of urban logistics is a pressing issue. About one third of the freight-related CO 2 emissions in the Netherlands relates to urban logistics, consisting of both vans and trucks. Although electrification is a feasible solution, delivery models that not only focus on reducing the carbon footprint, but also the spatial footprint are important. A one-to-one replacement of diesel vehicles with electric vehicles does not reduce urban logistics' spatial footprint in densifying cities nor the delivery vans' perceived nuisance. This paper examines the impact of alternative delivery models in the parcel- and home delivery segment in four future scenarios on CO 2 emissions, vehicle kilometres and number and type of vehicles used (2030). Analyses are based on data from three companies in a large metropolitan region in the Netherlands. The results show the impact of vehicles fleets electrification, transhipment in consolidation points and a network of pickup points. This study illustrates that developing alternative last mile networks can result in a decrease in vehicle (van) movements, and with that a serious decrease in emissions. The implications of the results on the carbon footprint, urban space usage and costs for companies are discussed.
LINK
This study systematically evaluates greenhouse gas (GHG) emissions reporting practices of European airline groups, covering both mandatory and voluntary key performance indicators (KPIs) under evolving regulatory frameworks. By analysing annual and sustainability reports from 16 major airline groups, the research identifies significant progress in the reporting of core metrics, with Scope 1 CO2 totals reported by 94 % and emissions intensity by 88 %, reflecting growing regulatory alignment and stakeholder expectations. However, persistent gaps remain: Scope 2 and Scope 3 reporting appears in only 56 % and 50 % of cases, respectively, while non-CO2 emissions are disclosed by just 38 %, despite forthcoming European Union Emissions Trading System (EU ETS) monitoring requirements. Reporting on sustainable aviation fuels (SAF) life-cycle emissions is limited (19 %), and CO2 offsetting disclosures are rare (6 %), complicating verification of decarbonisation claims and readiness for ReFuelEU Aviation and Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA). The proliferation of voluntary KPI disclosures further complicates comparability due to a lack of standardization and clear definitions. These challenges are compounded by risks of greenwashing, where airlines selectively report favourable data such as emissions intensity, and greenhushing, where substantive achievements are under-communicated. The study concludes that while regulatory frameworks such as the Corporate Sustainability Reporting Directive (CSRD), the EU ETS, CORSIA, and ReFuelEU are driving improvements, further harmonization and methodological clarity are required to ensure transparency, comparability, and genuine progress toward aviation's climate goals.
DOCUMENT
The 2018 IPCC Special Report on Global Warming of 1.5 °C once again highlighted (and with increased urgency) the benefits of immediate, extreme decarbonisation efforts in order to minimise the negative impacts of climate change. Achieving such demanding global targets requires concerted national, subnational, and local efforts. In combination, these efforts result in transition pathways. Implementation of the technologies and policies at the heart of such pathways is often considered as inherently positive, thus the immediate risks associated with the pathway are the barriers faced on implementation. However, successful implementation of a climate change mitigation policy may also have potentially negative consequences. On either side a host of more abstract uncertainties increase the difficultly of decision making. In this chapter, we provide a synthesis of eleven low-carbon transition pathways from across the globe and explore the risks and uncertainties associated with them. We structure our discussion around three nested dimensions present in all pathways: technological innovations implemented in a local context; policy mixes promoting these technologies; and society, where social-economic priorities may lead individuals and communities to support or oppose the low-carbon pathway. Across these themes, we also explore the meaning of scale and stakeholders’ perceptions of time in low-carbon pathways. Our discussion reflects the complexity associated with assessing risks in contested settings. While many of these risks are context specific and reflect a broad range of stakeholder perspectives, common risks are found across the case studies, regardless of the local context, the technology promoted, and the policy mix implemented.
DOCUMENT
Since the film of Al Gore An inconvenient truth, sustainability stands high on the national agenda of most countries. Concern for the environment is one of the main reasons in combination with opportunities to innovate. In general, innovation and entrepreneurship are important in the realm of national economies because they hold the key to the continuity and growth of companies (e.g. Hage, 1999; Cooper, 1987; Van de Ven, 2007) and economic growth within a country. It is therefore obvious that national governments are investing money to enable and improve innovation management and entrepreneurial behaviour within organizations with sustainability in mind. Policy measures are aimed at reduction of carbon dioxide emission, waste management and alternative use of energy sources and materials. In line with these measures companies are urged to integrate sustainability in their business processes and search for innovative sustainable solutions. While on a national level policy measures towards a more sustainable society are defined, enterprises - and especially small and medium sized companies - lag behind and fail in incorporating these measures appropriately in their day-to day business. As a result research for sustainability has become an important driver for innovation. Within the Centre for Innovation and Entrepreneurship (CI&E) at The Hague University of Applied Sciences we have taken the initiative to develop an innovation and research program for the construction industry to help small and medium sized companies (SME's) integrate sustainability in their business processes, while simultaneously professionalizing students and lecturers. This paper is part of ongoing research among 40 companies in the region of South-Holland. The companies are mostly SME's varying from very small (6 employees) to middle-sized (more than 100). According to Rennings (2000) while innovation processes toward sustainable development have received increasing attention during the past years, theoretical and methodological approaches to analyse these processes are poorly developed. This paper describes a theoretical approach developed at our university's Centre for Innovation and Entrepreneurship, which combines education and research. It is an inductive approach that departs from real-life problems encountered by companies, and is aimed at developing a model that supports companies in integrating sustainability in their business and innovation processes. We describe the experiences so far with a number of companies in the construction industry, which participate in the innovation and research program described above and the barriers they encounter. Our sustainable program is centred on four themes: cradle-to-cradle, social corporate responsibility, climateneutral construction and sustainability and customer orientation in the building process. It is an exploratory research in which students and undergraduates are involved under the supervision of a lecturer as senior researcher of this program. Through an in-depth analysis of the companies, participant observation and indepth interviews with the owners/directors of the companies, experts and prominent sustainable trendsetters, insight is gained in innovation processes towards sustainable development. Preliminary conclusions show that on a company level one of the main bottlenecks is the dilemma posed by the need for profit for the continuity of a company, while taking into account people and planet. The main bottleneck is however the inability of companies to translate policy measures into strategy and operations. This paper is set up as follows. In section 2 we give an account of European and Dutch policy measures geared at stimulating sustainability in a business context and especially the building and construction industry. In section 3 an overview is given of the economic importance and characteristics of the Dutch building and construction industry and the problems in this sector. These problems are offset against the opportunity of sustainability as a strategic option for SME's in this sector. In section 4 the innovation and research program developed at the CI&E is introduced in the context of the main research question. Following that in section 5, methodological choices are addressed and the research design is presented. We finalize this paper in section 6 with our conclusions and recommendations for further research.
DOCUMENT