The Dutch government, in alignment with the Paris climate agreement, has expressed the ambition to reduce CO 2 emissions in the Netherlands by 49% in 2030 compared to 1990. As freight transport is recognized as a serious CO 2 emitter, this sector is confronted with a substantial part of the target. For cities, the reduction of the urban freight transport emissions is, next to the CO 2 reduction, also important to improve the air quality. Dutch municipalities take an active role in coordination, facilitation and acceleration of the emission reduction processes, not only via regulation but also by using their public procurement power. This paper describes the City of Rotterdam's experiences from the EU Horizon 2020 BuyZET project. This project was launched in November 2016 and includes the cities of Rotterdam, Oslo and Copenhagen. The project aims at understanding and optimising the impact of public procurement activities on transport patterns and emissions in cities as well as to find innovative and sustainable delivery solutions for goods and services-related transport in order to reduce emissions.
MULTIFILE
Ship-source greenhouse gas (GHG) emissions could increase by up to 250% from 2012 levels by 2050 owing to increasing global freight volumes. Binding international legal agreements to regulate GHGs, however, are lacking as technical solutions remain expensive and crucial industrial support is absent. In 2003, IMO adopted Resolution A.963 (23) to regulate shipping CO2 emissions via technical, operational, and market-based routes. However, progress has been slow and uncertain; there is no concrete emission reduction target or definitive action plan. Yet, a full-fledged roadmap may not even emerge until 2023. In this policy analysis, we revisit the progress of technical, operational, and market-based routes and the associated controversies. We argue that 1) a performance-based index, though good-intentioned, has loopholes affecting meaningful CO2 emission reductions driven by technical advancements; 2) using slow steaming to cut energy consumption stands out among operational solutions thanks to its immediate and obvious results, but with the already slow speed in practice, this single source has limited emission reduction potential; 3) without a technology-savvy shipping industry, a market-based approach is essentially needed to address the environmental impact. To give shipping a 50:50 chance for contributing fairly and proportionately to keep global warming below 2°C, deep emission reductions should occur soon.
The growing demand for both retrofitting and refitting, driven by an aging global fleet and decarbonization efforts, including the need to accommodate alternative fuels such as LNG, methanol, and ammonia, offers opportunities for sustainability. However, they also pose challenges, such as emissions generated during these processes and the environmental impacts associated with the disposal of old components. The region Rotterdam and Drechtsteden form a unique Dutch maritime ecosystem of port logistics, shipbuilding, offshore operations, and innovation facilities, supported by Europe’s largest port and world-class infrastructure connecting global trade routes. The Netherlands’ maritime sector, including the sector concentrated in Zuid-Holland, is facing competition from subsidized Asian companies, leading to a steep decline in Europe’s shipbuilding market share from 45% in the 1980s to just 4% in 2023. Nonetheless, the shift toward climate-neutral ships presents economic opportunities for Dutch maritime companies. Thus, developing CE approaches to refitting is essential for promoting sustainability and addressing the pressing environmental and competitive challenges facing the sector and has led companies in the sector to establish the Open Joint Industry Project (OJIP) called Circolab of which this PD forms the core.
The maritime transport industry is facing a series of challenges due to the phasing out of fossil fuels and the challenges from decarbonization. The proposal of proper alternatives is not a straightforward process. While the current generation of ship design software offers results, there is a clear missed potential in new software technologies like machine learning and data science. This leads to the question: how can we use modern computational technologies like data analysis and machine learning to enhance the ship design process, considering the tools from the wider industry and the industry’s readiness to embrace new technologies and solutions? The obbjective of this PD project is to bridge the critical gap between the maritime industry's pressing need for innovative solutions for a more agile Ship Design Process; and the current limitations in software tools and methodologies available via the implementation into Ship Design specific software of the new generation of computational technologies available, as big data science and machine learning.
Possibly, the aviation sector’s decarbonization challenge (see Dutch knowledge key in international climate study for tourism | CELTH) has profound implications for the ability of aviation-de-pendent outbound tour operators to attract capital and with that their ability to maintain or trans-form their current business portfolio (understood here as the current product offers and approximate carbon footprints, business models, and ownership structures present in this economic do-main). Knowledge about these (possible) investment risks and their business and policy implications is lacking. This project therefore addresses this knowledge gap by means of the following research questions.1. What is the current business portfolio of Dutch outbound tour operators?a. To what extend do Dutch outbound tour operators depend on aviation in terms of product offer and turnover?b. What is the relative carbon footprint share of aviation-based products compared to the total outbound product offer and turnover of Dutch outbound tour operators?2. What are investment risks of this business portfolio as indicated by investors?a. How do investors evaluate investment risks in relation to climate change mitigation and de-carbonisation?b. What are investment risks of the business portfolio of Dutch outbound tour operators?c. What are the reflections on and implications of these investment risks from the perspective of policymakers and tour operators?