This book brings together voices from various fields of intellectual inquiry, based on the idea that technological, legal and societal aspects of the information sphere are interlinked and co-dependent from each other. In order to tackle the existing gap in shared semantics, this glossary converges the efforts of experts from various disciplines to build a shared vocabulary on the social, technical, economic, political aspects of decentralised, distributed or sovereign technologies: artefacts which seek to challenge the techno-social status quo by, for example, circumventing law enforcement, resisting surveillance, or being participative.The idea ofthis glossary arose from the need for a workable, flexible and multidisciplinary resource for terminological clarity, which reflects instead of denying complexity. Situating the terms emerging through technology development in the wider context of multidisciplinary scientific, policy and political discourses, this glossary provides a conceptual toolkit for the study of the various political, economic, legal and technical struggles that decentralised, encryption-based, peer-to-peer technologies bring about and go through.Choosing relevant technology-related terms and understanding them is to investigate their affordances within a given ecosystem of actors, discourses and systems of incentives. This requires an interdisciplinary, multi-layered approach that is attentive to the interlinkages between technological design nuances and socio-political, economic implications.The glossary was envisioned as a long-term collaborative project, and as a work-in-progress, as new entries are periodically added over time. The present book collects the entries published on the Internet Policy Review between 2021 and 2023. Therefore, it represents the first volume of what hopefully will be a long-term, ever-evolving editorial collaboration, whose sources of inspiration and goals evolve with the evolving of the broader discussions on decentralized technologies.
MULTIFILE
In the dynamic environment of increasing regulations, increasing patient demand, decentralization of budgets and enforcement of efficiency, small sized healthcare institutions in the Netherlands are having a difficult time. Although these service providers are usually capable of flexibly delivering healthcare, the investment and overhead for implementing and executing on required quality management standards like ISO 9001 is difficult. In this paper we construct a method for the implementation of an IT-enabled quality management system for small sized healthcare institutions, which is applied through case study. The case organisation provides intra- and extramural care for mentally handicapped persons and young adults with a psychiatric disorder. The quality management system implementation is based on 1) a lightweight IT infrastructure (based at a secure data centre and accessible through remote login) implying secure storage of patients' medical and personal information. Furthermore, the Deming (Deming, 1982) cycle enabled processes and protocols are 2) described in an e-handbook and prototyped via an open source process management system which supports the quality regulation demanded for providing care to patients. The case study supports the validity of our method and the fact that small sized healthcare institutions are able to execute their care while adhering to ISO 9001-like standards, with limited initial costs and relatively low cost of ownership
DOCUMENT
This article presents a case study on the implementation of the Thames Estuary 2100 Plan in the Royal Docks, a regeneration project in the East of London. On paper, the Thames Estuary 2100 Plan advances the shift from traditional flood control to flood resilience, because of its long-term horizon, estuary-wide approach, and emphasis on floodplain management. In practice, however, we identify three frictions between vision and reality: a lack of local ownership of the plan, a lack of clear guidance for floodplain management, and limited capacities with local authority. These frictions suggest an ongoing ‘public-public divide’ in decentralized governance.
DOCUMENT
298 woorden: In the upcoming years the whole concept of mobility will radically change. Decentralization of energy generation, urbanization, digitalization of processes, electrification of vehicles and shared mobility are only some trends which have a strong influence on future mobility. Furthermore, due to the shift towards renewable energy production, the public and the private sector are required to develop new infrastructures, new policies as well as new business models. There are countless opportunities for innovative business models emerging. Companies in this field – such as charging solution provider, project management or consulting companies that are part of this project, Heliox and Over Morgen respectively – are challenged with countless possibilities and increasing complexity. How to overcome this problem? Academic research proposes a promising approach, namely the use of business model patterns for business model innovation. In short, these business model patterns are descriptions of proven practical solutions to common business model challenges. An example for a general pattern would be the business model pattern “Consumables”. It describes how to lock in a customer into an ecosystem by using a subsidized basic product and complement it with overpriced consumables. This pattern works really well and has been used by many companies (e.g. Senseo, HP, or Gillette). To support the business model innovation process of Heliox and Over Morgen as well as companies in the electric mobility space in general, we propose to systematically consolidate and develop business model patterns for the electric mobility sector and to create a database. Electric mobility patterns could not only foster creativity in the business model innovation process but also enhance collaboration in teams. By having a classified list of business model pattern for electric mobility, practitioners are equipped which a heuristic tool to create, extend and revise business models for the future.
The population in rural areas in the northern provinces are aging in a much higher pace than in other parts of the Netherlands. Many young and higher educated citizens move out of these provinces. Quality of life in rural villages decreases likewise and the inhabitants that stay behind are more vulnerable, with lower income and educational levels. Recent decentralization policies put a larger burden on local constituencies to guarantee the quality of the living environment but a lot of them lack sufficient knowledge and capacity to tackle this complex issue.The initiators of this application have joined their knowledge and experience to put together a consortium with the aim to support these smaller constituencies in rural areas in the three northern provinces with a new and innovative methodology: the GO! approach. This approach was developed in the neigborhoods of Utrecht municipality and will be used for the first time in rural communities with a comparable size .This approach consists of the following steps:• First to identify possibilities to create a healthier living environment by analyzing available data on pollution, spatial layout and social cohesion.• To discuss the result of this analysis with local citizens and other local stakeholders in order to link the data with local experiences• To prioritize into major themes as a result of the combination of all this available information.• To link these major themes to combinations effective measures available from RIVM and international databases.• To present these combinations to the local government, their citizens and other local stakeholders in order to let them choose for an effective approach and inplemant it together in order to create a local healthier living environment.The GO! approach will provide local citizens and professionals with the necessary tools and knowledge to work jointly and effectively to realize a healthier living environment. The project partners that jointly started the consortium will put in effort during this first year to build and formalize the consortium and to make arrangements with several constituencies in the three northers provinces to formulate their own specific knowledge agenda as a basis for concrete project proposals in the second stage to be implemented with the support of the formalized consortium.