People with dementia are confronted with many decisions. However, they are often not involved in the process of the decision-making. Shared Decision-Making (SDM) enables involvement of persons with dementia in the decision-making process. In our study, we develop a supportive IT application aiming to facilitate the decision-making process in care networks of people with dementia. A key feature in the development of this SDM tool is the participation of all network members during the design and development process, including the person with dementia. In this paper, we give insight into the first phases of this design and development process in which we conducted extensive user studies and translated wishes and needs of network members into user requirements
DOCUMENT
Sinds september 2015 is de ‘business rule management wereld’ / ‘decision management wereld’ weer een standaard rijker: The Decision Model and Notation (DMN). De Object Management Group (OMG) heeft deze nieuwe standaard uitgebracht met als doel een standaard taal te creëren om 1) requirements voor beslissingen en 2) de beslissingen zelf te modelleren. De adoptie van DMN heeft een wat lange aanloop gehad, maar begint nu serieuze vormen aan te nemen. Om deze reden brengen wij een vierdelige serie over DMN en het gebruik van DMN uit. In deze introductie, deel 1, gaan we in op de basis van The Decision Model and Notation.
LINK
In recent years, there has been an exponential increase in the use of health and sports-related smartphone applications (apps). This is also reflected in App-stores, which are stacked with thousands of health- and sports-apps, with new apps launched each day. These apps have great potential to monitor and support people’s physical activity and health. For users, however, it is difficult to know which app suits their needs. In this paper, we present an online tool that supports the decision-making process for choosing an appropriate app. We constructed and validated a screening instrument to assess app content quality, together with the assessment of users’ needs. Both served as input for building the tool through various iterations with prototypes and user tests. This resulted in an online tool which relies on app content quality scores to match the users’ needs with apps that score high in the screening instrument on those particular needs. Users can add new apps to the database via the screening instrument, making the tool self-supportive and future proof. A feedback loop allows users to give feedback on the recommended app and how well it meets their needs. This feedback is added to the database and used in future filtering and recommendations. The principles used can be applied to other areas of sports, physical activity and health to help users to select an app that suits their needs. Potentially increasing the long-term use of apps to monitor and to support physical activity and health.
DOCUMENT
Middels een RAAK-impuls aanvraag wordt beoogd de vertraging van het RAAK-mkb project Praktische Predictie t.g.v. corona in te halen. In het project Praktische Predictie wordt een prototype app ontwikkeld waarmee fysiotherapeuten in een vroeg stadium het chronisch worden van lage rugpijn kunnen voorspellen. Om chronische rugpijn te voorkomen is het belangrijk om in een vroeg stadium de kans hierop in te schatten door psychosociale en mogelijk andere risicofactoren op chronische pijnklachten te herkennen en hierop te interveniëren. Fysiotherapeuten zijn met deze vraag naar het lectoraat Werkzame factoren in Fysiotherapie en Paramedisch Handelen van de Hogeschool van Arnhem en Nijmegen gegaan en dit heeft aanleiding gegeven een onderzoek op te zetten waarin een dergelijke methodiek ontwikkeld wordt. De voorgestelde methodiek betreft een Clinical Decision Support Tool waarmee een geïndividualiseerde kans op chronische rugpijn kan worden bepaald gekoppeld aan een behandeladvies conform de lage rugpijn richtlijn. Hiervoor is eerst geïnventariseerd welke methoden fysiotherapeuten reeds gebruiken en welke in de literatuur worden genoemd. Op basis hiervan is een keuze gemaakt ten aanzien van data die digitaal verzameld worden in minimaal 16 fysiotherapiepraktijken waarbij patiënten gedurende 12 weken gevolgd worden. Met de verzamelde data worden met machine learning algoritmes ontwikkeld voor het berekenen van de kans op chroniciteit. De algoritmes worden ingebouwd in de Clinical Decision Support Tool: een gebruiksvriendelijke prototype app. Bij het ontwikkelen van de tool worden eindgebruikers (fysiotherapeuten en patiënten) intensief betrokken. Op deze manier wordt gegarandeerd dat de tool aansluit bij de wensen en behoeften van de doelgroep. De tool berekent de kans op chroniciteit en geeft een behandeladvies. Daarnaast kan de tool gebruikt worden om patiënten te informeren en te betrekken bij de besluitvorming. Vanwege de coronacrisis is er een aanzienlijke vertraging in de patiënten-instroom (doel n= 300) ontstaan die we met ondersteuning van een RAAK-impuls subsidie willen inlopen.
The focus of this project is on improving the resilience of hospitality Small and Medium Enterprises (SMEs) by enabling them to take advantage of digitalization tools and data analytics in particular. Hospitality SMEs play an important role in their local community but are vulnerable to shifts in demand. Due to a lack of resources (time, finance, and sometimes knowledge), they do not have sufficient access to data analytics tools that are typically available to larger organizations. The purpose of this project is therefore to develop a prototype infrastructure or ecosystem showcasing how Dutch hospitality SMEs can develop their data analytic capability in such a way that they increase their resilience to shifts in demand. The one year exploration period will be used to assess the feasibility of such an infrastructure and will address technological aspects (e.g. kind of technological platform), process aspects (e.g. prerequisites for collaboration such as confidentiality and safety of data), knowledge aspects (e.g. what knowledge of data analytics do SMEs need and through what medium), and organizational aspects (what kind of cooperation form is necessary and how should it be financed).Societal issueIn the Netherlands, hospitality SMEs such as hotels play an important role in local communities, providing employment opportunities, supporting financially or otherwise local social activities and sports teams (Panteia, 2023). Nevertheless, due to their high fixed cost / low variable business model, hospitality SMEs are vulnerable to shifts in consumer demand (Kokkinou, Mitas, et al., 2023; Koninklijke Horeca Nederland, 2023). This risk could be partially mitigated by using data analytics, to gain visibility over demand, and make data-driven decisions regarding allocation of marketing resources, pricing, procurement, etc…. However, this requires investments in technology, processes, and training that are oftentimes (financially) inaccessible to these small SMEs.Benefit for societyThe proposed study touches upon several key enabling technologies First, key enabling technology participation and co-creation lies at the center of this proposal. The premise is that regional hospitality SMEs can achieve more by combining their knowledge and resources. The proposed project therefore aims to give diverse stakeholders the means and opportunity to collaborate, learn from each other, and work together on a prototype collaboration. The proposed study thereby also contributes to developing knowledge with and for entrepreneurs and to digitalization of the tourism and hospitality sector.Collaborative partnersHZ University of Applied Sciences, Hotel Hulst, Hotel/Restaurant de Belgische Loodsensociëteit, Hotel Zilt, DM Hotels, Hotel Charley's, Juyo Analytics, Impuls Zeeland.
Developing a framework that integrates Advanced Language Models into the qualitative research process.Qualitative research, vital for understanding complex phenomena, is often limited by labour-intensive data collection, transcription, and analysis processes. This hinders scalability, accessibility, and efficiency in both academic and industry contexts. As a result, insights are often delayed or incomplete, impacting decision-making, policy development, and innovation. The lack of tools to enhance accuracy and reduce human error exacerbates these challenges, particularly for projects requiring large datasets or quick iterations. Addressing these inefficiencies through AI-driven solutions like AIDA can empower researchers, enhance outcomes, and make qualitative research more inclusive, impactful, and efficient.The AIDA project enhances qualitative research by integrating AI technologies to streamline transcription, coding, and analysis processes. This innovation enables researchers to analyse larger datasets with greater efficiency and accuracy, providing faster and more comprehensive insights. By reducing manual effort and human error, AIDA empowers organisations to make informed decisions and implement evidence-based policies more effectively. Its scalability supports diverse societal and industry applications, from healthcare to market research, fostering innovation and addressing complex challenges. Ultimately, AIDA contributes to improving research quality, accessibility, and societal relevance, driving advancements across multiple sectors.