In case of a major cyber incident, organizations usually rely on external providers of Cyber Incident Response (CIR) services. CIR consultants operate in a dynamic and constantly changing environment in which they must actively engage in information management and problem solving while adapting to complex circumstances. In this challenging environment CIR consultants need to make critical decisions about what to advise clients that are impacted by a major cyber incident. Despite its relevance, CIR decision making is an understudied topic. The objective of this preliminary investigation is therefore to understand what decision-making strategies experienced CIR consultants use during challenging incidents and to offer suggestions for training and decision-aiding. A general understanding of operational decision making under pressure, uncertainty, and high stakes was established by reviewing the body of knowledge known as Naturalistic Decision Making (NDM). The general conclusion of NDM research is that experts usually make adequate decisions based on (fast) recognition of the situation and applying the most obvious (default) response pattern that has worked in similar situations in the past. In exceptional situations, however, this way of recognition-primed decision-making results in suboptimal decisions as experts are likely to miss conflicting cues once the situation is quickly recognized under pressure. Understanding the default response pattern and the rare occasions in which this response pattern could be ineffective is therefore key for improving and aiding cyber incident response decision making. Therefore, we interviewed six experienced CIR consultants and used the critical decision method (CDM) to learn how they made decisions under challenging conditions. The main conclusion is that the default response pattern for CIR consultants during cyber breaches is to reduce uncertainty as much as possible by gathering and investigating data and thus delay decision making about eradication until the investigation is completed. According to the respondents, this strategy usually works well and provides the most assurance that the threat actor can be completely removed from the network. However, the majority of respondents could recall at least one case in which this strategy (in hindsight) resulted in unnecessary theft of data or damage. Interestingly, this finding is strikingly different from other operational decision-making domains such as the military, police and fire service in which there is a general tendency to act rapidly instead of searching for more information. The main advice is that training and decision aiding of (novice) cyber incident responders should be aimed at the following: (a) make cyber incident responders aware of how recognition-primed decision making works; (b) discuss the default response strategy that typically works well in several scenarios; (c) explain the exception and how the exception can be recognized; (d) provide alternative response strategies that work better in exceptional situations.
DOCUMENT
Objective: To construct the underlying value structure of shared decision making (SDM) models. Method: We included previously identified SDM models (n = 40) and 15 additional ones. Using a thematic analysis, we coded the data using Schwartz’s value theory to define values in SDM and to investigate value relations. Results: We identified and defined eight values and developed three themes based on their relations: shared control, a safe and supportive environment, and decisions tailored to patients. We constructed a value structure based on the value relations and themes: the interplay of healthcare professionals’ (HCPs) and patients’ skills [Achievement], support for a patient [Benevolence], and a good relationship between HCP and patient [Security] all facilitate patients’ autonomy [Self-Direction]. These values enable a more balanced relationship between HCP and patient and tailored decision making [Universalism]. Conclusion: SDM can be realized by an interplay of values. The values Benevolence and Security deserve more explicit attention, and may especially increase vulnerable patients’ Self-Direction. Practice implications: This value structure enables a comparison of values underlying SDM with those of specific populations, facilitating the incorporation of patients’ values into treatment decision making. It may also inform the development of SDM measures, interventions, education programs, and HCPs when practicing.
DOCUMENT
Current many changes are taking place in the elderly care: care is changing from supply-oriented to demand driven, problems have to be more serious than previously to get a placement in a nursing home, furthermore the demand for heavier care will increase due to ageing. The aim of this study is to acquire a clear insight in the decision-making process with regard to placement in a nursing home facility.
DOCUMENT
Purpose: This study assesses the perceived quality of the outcomes in decision-making phases by using the conversational ai approach. Design/Method: The research adopts an experimental design to explore the impact of conversational artificial intelligence (AI) in the separate phases of a decision-making making process. This investigation is conducted through a team-level “Shark Tank” game, which serves as a dynamic platform. Findings: The data indicated a discernible pattern across all five steps of the decision-making process. The integration of AI, particularly Conversational AI, consistently improves the perceived quality of decisions, with varying degrees of impact at various stages. Originality/Value: This study contributes by particularly focusing on the conversational AI approach, to discern its efficacy in enhancing decision making processes. It is critical in contributing to the rapidly growing field of AI in decision making, providing a deeper understanding of AI's role in improving decision making quality.
DOCUMENT
The decision-making process in boardrooms has a significant impact on organizational performance. In the last two decades, scientific research on the decision-making process in boardrooms has increased. This resulted in a substantial body of knowledge about boardroom factors and their relation to organizational performance. However, the effectiveness of the decision-making process in boardrooms is still mainly a black box. Amongst other things, scientific findings seem to contradict each other, which could mean additional insights are still missing. This research aims to contribute to a better understanding of this black box.
DOCUMENT
Aim To provide insight into the basic characteristics of decision making in the treatment of symptomatic severe aortic stenosis (SSAS) in Dutch heart centres with specific emphasis on the evaluation of frailty, cognition, nutritional status and physical functioning/functionality in (instrumental) activities of daily living [(I)ADL]. Methods A questionnaire was used that is based on the European and American guidelines for SSAS treatment. The survey was administered to physicians and non-physicians in Dutch heart centres involved in the decision-making pathway for SSAS treatment. Results All 16 Dutch heart centres participated. Before a patient case is discussed by the heart team, heart centres rarely request data from the referring hospital regarding patients’ functionality (n = 5), frailty scores (n = 0) and geriatric consultation (n = 1) as a standard procedure. Most heart centres ‘often to always’ do their own screening for frailty (n = 10), cognition/mood (n = 9), nutritional status (n = 10) and physical functioning/functionality in (I)ADL (n = 10). During heart team meetings data are ‘sometimes to regularly’ available regarding frailty (n = 5), cognition/mood (n = 11), nutritional status (n = 8) and physical functioning/functionality in (I)ADL (n = 10). After assessment in the outpatient clinic patient cases are re-discussed ‘sometimes to regularly’ in heart team meetings (n = 10). Conclusions Dutch heart centres make an effort to evaluate frailty, cognition, nutritional status and physical functioning/functionality in (I)ADL for decision making regarding SSAS treatment. However, these patient data are not routinely requested from the referring hospital and are not always available for heart team meetings. Incorporation of these important data in a structured manner early in the decision-making process may provide additional useful information for decision making in the heart team meeting.
LINK
Proper decision-making is one of the most important capabilities of an organization. Therefore, it is important to have a clear understanding and overview of the decisions an organization makes. A means to understanding and modeling decisions is the Decision Model and Notation (DMN) standard published by the Object Management Group in 2015. In this standard, it is possible to design and specify how a decision should be taken. However, DMN lacks elements to specify the actors that fulfil different roles in the decision-making process as well as not taking into account the autonomy of machines. In this paper, we re-address and-present our earlier work [1] that focuses on the construction of a framework that takes into account different roles in the decision-making process, and also includes the extent of the autonomy when machines are involved in the decision-making processes. Yet, we extended our previous research with more detailed discussion of the related literature, running cases, and results, which provides a grounded basis from which further research on the governance of (semi) automated decision-making can be conducted. The contributions of this paper are twofold; 1) a framework that combines both autonomy and separation of concerns aspects for decision-making in practice while 2) the proposed theory forms a grounded argument to enrich the current DMN standard.
DOCUMENT
Background Clients facing decision-making for long-term care are in need of support and accessible information. Construction of preferences, including context and calculations, for clients in long-term care is challenging because of the variability in supply and demand. This study considers clients in four different sectors of long-term care: the nursing and care of the elderly, mental health care, care of people with disabilities, and social care. The aim is to understand the construction of preferences in real-life situations. Method Client choices were investigated by qualitative descriptive research. Data were collected from 16 in-depth interviews and 79 client records. Interviews were conducted with clients and relatives or informal caregivers from different care sectors. The original client records were explored, containing texts, letters, and comments of clients and caregivers. All data were analyzed using thematic analysis. Results Four cases showed how preferences were constructed during the decision-making process. Clients discussed a wide range of challenging aspects that have an impact on the construction of preferences, e.g. previous experiences, current treatment or family situation. This study describes two main characteristics of the construction of preferences: context and calculation. Conclusion Clients face diverse challenges during the decision-making process on long-term care and their construction of preferences is variable. A well-designed tool to support the elicitation of preferences seems beneficial.
DOCUMENT
People with dementia are confronted with many decisions. However, they are often not involved in the process of the decision-making. Shared Decision-Making (SDM) enables involvement of persons with dementia in the decision-making process. In our study, we develop a supportive IT application aiming to facilitate the decision-making process in care networks of people with dementia. A key feature in the development of this SDM tool is the participation of all network members during the design and development process, including the person with dementia. In this paper, we give insight into the first phases of this design and development process in which we conducted extensive user studies and translated wishes and needs of network members into user requirements
DOCUMENT
In the decision-making environment of evidence-based practice, the following three sources of information must be integrated: research evidence of the intervention, clinical expertise, and the patient’s values. In reality, evidence-based practice usually focuses on research evidence (which may be translated into clinical practice guidelines) and clinical expertise without considering the individual patient’s values. The shared decision-making model seems to be helpful in the integration of the individual patient’s values in evidence-based practice. We aim to discuss the relevance of shared decision making in chronic care and to suggest how it can be integrated with evidence-based practice in nursing. We start by describing the following three possible approaches to guide the decision-making process: the paternalistic approach, the informed approach, and the shared decision-making approach. Implementation of shared decision making has gained considerable interest in cases lacking a strong best-treatment recommendation, and when the available treatment options are equivalent to some extent. We discuss that in chronic care it is important to always invite the patient to participate in the decision-making process. We delineate the following six attributes of health care interventions in chronic care that influence the degree of shared decision making: the level of research evidence, the number of available intervention options, the burden of side effects, the impact on lifestyle, the patient group values, and the impact on resources. Furthermore, the patient’s willingness to participate in shared decision making, the clinical expertise of the nurse, and the context in which the decision making takes place affect the shared decision-making process. A knowledgeable and skilled nurse with a positive attitude towards shared decision making – integrated with evidence-based practice – can facilitate the shared decision-making process. We conclude that nurses as well as other health care professionals in chronic care should integrate shared decision making with evidence- based practice to deliver patient-centred care.
DOCUMENT