This article discusses Deep Mapping in Geography teaching and learning by drawing on a case study of a summer school organised during the COVID-19 pandemic. Deep Mapping was used to foster deep learning among the students and teach them about a distant place and people. The exercise tasked the students to work on the creation of layered maps representing the fieldwork site, the city of Vancouver, Canada. Critical student reflections about the Deep Mapping process are used to address some of the benefits and challenges. The Deep Mapping exercise stimulated the students to critically engage with the diverse summer school materials, move beyond a superficial view of the city, maps and mapping, and reflect on their positionality. The method is promising in light of making deep engagement with other places more accessible to those who might not have or be inclined to access such international educational experience and also offers another opportunity for blended learning. In conclusion, we argue that Deep Mapping offers a timely and highly engaging approach to learn about a place and people from another part of the world – be it on location or at a distance.
DOCUMENT
Industrial robot manipulators are widely used for repetitive applications that require high precision, like pick-and-place. In many cases, the movements of industrial robot manipulators are hard-coded or manually defined, and need to be adjusted if the objects being manipulated change position. To increase flexibility, an industrial robot should be able to adjust its configuration in order to grasp objects in variable/unknown positions. This can be achieved by off-the-shelf vision-based solutions, but most require prior knowledge about each object tobe manipulated. To address this issue, this work presents a ROS-based deep reinforcement learning solution to robotic grasping for a Collaborative Robot (Cobot) using a depth camera. The solution uses deep Q-learning to process the color and depth images and generate a greedy policy used to define the robot action. The Q-values are estimated using Convolutional Neural Network (CNN) based on pre-trained models for feature extraction. Experiments were carried out in a simulated environment to compare the performance of four different pre-trained CNNmodels (RexNext, MobileNet, MNASNet and DenseNet). Results showthat the best performance in our application was reached by MobileNet,with an average of 84 % accuracy after training in simulated environment.
DOCUMENT
Background: Profiling the plant root architecture is vital for selecting resilient crops that can efficiently take up water and nutrients. The high-performance imaging tools available to study root-growth dynamics with the optimal resolution are costly and stationary. In addition, performing nondestructive high-throughput phenotyping to extract the structural and morphological features of roots remains challenging. Results: We developed the MultipleXLab: a modular, mobile, and cost-effective setup to tackle these limitations. The system can continuously monitor thousands of seeds from germination to root development based on a conventional camera attached to a motorized multiaxis-rotational stage and custom-built 3D-printed plate holder with integrated light-emitting diode lighting. We also developed an image segmentation model based on deep learning that allows the users to analyze the data automatically. We tested the MultipleXLab to monitor seed germination and root growth of Arabidopsis developmental, cell cycle, and auxin transport mutants non-invasively at high-throughput and showed that the system provides robust data and allows precise evaluation of germination index and hourly growth rate between mutants. Conclusion: MultipleXLab provides a flexible and user-friendly root phenotyping platform that is an attractive mobile alternative to high-end imaging platforms and stationary growth chambers. It can be used in numerous applications by plant biologists, the seed industry, crop scientists, and breeding companies.
LINK
Aaltjes: automatisch classificeren en tellen. Agrariërs laten bodemmonsters analyseren op onder meer aanwezigheid van aaltjes. Deze bodemanalyse is voor agrariërs cruciaal om de bodemgezondheid- en vruchtbaarheid vast te stellen maar behelst een grote kostenpost. Het identificeren, analyseren en tellen van aaltjes (nematoden) in een bodemmonster geschiedt in een gespecialiseerd laboratorium. Dit is tijdrovend, specialistisch en seizoensgebonden werk. Het tellen- en analyseren van aaltjes is mensenwerk en vergt training en ervaring van de laborant. Daarnaast hebben de laboratoria te maken met personeelstekort en de laboranten met sterk fluctuerende werkdruk. Derhalve is het speciaal voor dit project opgerichte samenwerkingsverband tussen Fontys GreenTechLab, ROBA Laboratorium en CytoSMART voornemens om een oplossing te ontwikkelen voor het automatisch classificeren en tellen van aaltjes. Dit project richt zich op de ontwikkeling van een proof of concept van een analysescanner. Het werk van de laboranten wordt grotendeels geautomatiseerd waarbij door de scanner de bodemmonsters middels toepassing van deep learning en virtual modeling kan worden geanalyseerd. Daarmee wordt beoogd een oplossing te bieden waarmee het personeelstekort wordt tegengegaan, de werkdruk kan worden verlaagd, mensenwerk wordt geautomatiseerd (waardoor de kans op fouten wordt verkleind) en de kosten voor agrariërs worden verlaagd.
The increasing amount of electronic waste (e-waste) urgently requires the use of innovative solutions within the circular economy models in this industry. Sorting of e-waste in a proper manner are essential for the recovery of valuable materials and minimizing environmental problems. The conventional e-waste sorting models are time-consuming processes, which involve laborious manual classification of complex and diverse electronic components. Moreover, the sector is lacking in skilled labor, thus making automation in sorting procedures is an urgent necessity. The project “AdapSort: Adaptive AI for Sorting E-Waste” aims to develop an adaptable AI-based system for optimal and efficient e-waste sorting. The project combines deep learning object detection algorithms with open-world vision-language models to enable adaptive AI models that incorporate operator feedback as part of a continuous learning process. The project initiates with problem analysis, including use case definition, requirement specification, and collection of labeled image data. AI models will be trained and deployed on edge devices for real-time sorting and scalability. Then, the feasibility of developing adaptive AI models that capture the state-of-the-art open-world vision-language models will be investigated. The human-in-the-loop learning is an important feature of this phase, wherein the user is enabled to provide ongoing feedback about how to refine the model further. An interface will be constructed to enable human intervention to facilitate real-time improvement of classification accuracy and sorting of different items. Finally, the project will deliver a proof of concept for the AI-based sorter, validated through selected use cases in collaboration with industrial partners. By integrating AI with human feedback, this project aims to facilitate e-waste management and serve as a foundation for larger projects.
Artificial Intelligence (AI) wordt realiteit. Slimme ICT-producten die diensten op maat leveren accelereren de digitalisering van de maatschappij. De grote innovaties van de komende jaren –zelfrijdende auto’s, spraakgestuurde virtuele assistenten, autodiagnose systemen, robots die autonoom complexe taken uitvoeren – zijn datagedreven en hebben een AI-component. Dit gaat de rol van professionals in alle domeinen, gezondheidzorg, bouwsector, financiële dienstverlening, maakindustrie, journalistiek, rechtspraak, etc., raken. ICT is niet meer volgend en ondersteunend (een ‘enabling’ technologie), maar de motor die de transformatie van de samenleving in gang zet. Grote bedrijven, overheidsinstanties, het MKB, en de vele startups in de Brainport regio zijn innovatieve datagedreven scenario’s volop aan het verkennen. Dit wordt nog eens versterkt door de democratisering van AI; machine learning en deep learning algoritmes zijn beschikbaar zowel in open source software als in Cloud oplossingen en zijn daarmee toegankelijk voor iedereen. Data science wordt ‘applied’ en verschuift van een PhD specialisme naar een HBO-vaardigheid. Het stadium waarin veel bedrijven nu verkeren is te omschrijven als: “Help, mijn AI-pilot is succesvol. Wat nu?” Deze aanvraag richt zich op het succesvol implementeren van AI binnen de context van softwareontwikkeling. De onderzoeksvraag van dit voorstel is: “Hoe kunnen we state-of-the-art data science methoden en technieken waardevol en verantwoord toepassen ten behoeve van deze slimme lerende ICT-producten?” De postdoc gaat fungeren als een linking pin tussen alle onderzoeksprojecten en opdrachten waarbij studenten ICT-producten met AI (machine learning, deep learning) ontwikkelen voor opdrachtgevers uit de praktijk. Door mee te kijken en mee te denken met de studenten kan de postdoc overzicht en inzicht creëren over alle cases heen. Als er overzicht is kan er daarna ook gestuurd worden op de uit te voeren cases om verschillende deelaspecten samen met de studenten te onderzoeken. Deliverables zijn rapporten, guidelines en frameworks voor praktijk en onderwijs, peer-reviewed artikelen en kennisdelingsevents.