Met toestemming overgenomen uit Microniek, 2020, nr. 5 A stereo-vision system that was developed for application in mobile robots turned outto lack depth resolution in the background of the pictures. A simulator was built togain understanding of the parameters that influence depth estimation in stereo vision.In this article we will explain how these properties influence depth resolution andprovide a link to the webtool that was made to interactively observe and evaluate theresulting depth resolution when the parameters are varied. This tool makes it possibleto find the correct hardware that provides the resolution required, or to determinethe resolution for specific hardware.
MULTIFILE
This paper investigates the limits and efficacies of the Fiber Reinforced Polymer (FRP) material for strengthening mid-rise RC buildings against seismic actions. Turkey, the region of the highest seismic risk in Europe, is chosen as the case-study country, the building stock of which consists in its vast majority of mid-rise RC residential and/or commercial buildings. Strengthening with traditional methods is usually applied in most projects, as ordinary construction materials and no specialized workmanship are required. However, in cases of tight time constraints, architectural limitations, durability issues or higher demand for ductile performance, FRP material is often opted for since the most recent Turkish Earthquake Code allows engineers to employ this advanced-technology product to overcome issues of inadequate ductility or shear capacity of existing RC buildings. The paper compares strengthening of a characteristically typical mid-rise Turkish RC building by two methods, i.e., traditional column jacketing and FRP strengthening, evaluating their effectiveness with respect to the requirements of the Turkish Earthquake Code. The effect of FRP confinement is explicitly taken into account in the numerical model, unlike the common procedure followed according to which the demand on un-strengthened members is established and then mere section analyses are employed to meet the additional demands.
This study aims to provide an in-depth characterization of the intelligent behaviour exhibited by structures fabricated using fused deposition modelling (FDM) printing technology. The primary objective is to understand the variability in the shape-morphing behaviour of additively manufactured PLA structures. A comprehensive analysis is conducted to shed light on the impact of various factors on shape transformation, encompassing both working and printing parameters. To establish the relationship between the printing and working parameters with the shape morphing characteristics, the experimental procedure employs Taguchi's method design of experiments. Notably, the study quantitatively reveals the extent of these parameters' impact on the characteristics.