In this document we present information about a test that we made to test SPOT with the RTK-GNSS and ROS2.
MULTIFILE
Industry 4.0 has placed an emphasis on real-time decision making in the execution of systems, such as semiconductor manufacturing. This article will evaluate a scheduling methodology called Evolutionary Learning Based Simulation Optimization (ELBSO) using data generated by a Manufacturing Execution System (MES) for scheduling a Stochastic Job Shop Scheduling Problem (SJSSP). ELBSO is embedded within Ordinal Optimization (OO), where in the first phase it uses a meta model, which previously was trained by a Discrete Event Simulation model of a SJSSP. The meta model used within ELBSO uses Genetic Programming (GP)-based Machine Learning (ML). Therefore, instead of using the DES model to train and test the meta model, this article uses historical data from a front-end fab to train and test. The results were statistically evaluated for the quality of the fit generated by the meta-model.
DOCUMENT
In het project CW4.0 onderzoeken MKB’ers uit de houtindustrie en Smart Industry samen met de Hogeschool van Amsterdam (HvA), kennispartners TNO, HMC en Bouwlab R&Do en partners in hospitality hoe zinvolle toepassingen te maken van resthout, met behulp van Industry 4.0-principes. Hoogwaardig hout blijft momenteel ongebruikt, omdat het te arbeids-intensief is grote hoeveelheden ongelijkmatige stukken hout van verschillende grootte en houtsoort te verwerken. Waardevol resthout wordt zo waardeloos afval, tegen de principes van de circulaire economie in. CW4.0 richt zich op de ontwikkeling van geautomatiseerde processen voor houtverwerking gebaseerd op Industry 4.0 technologieën - met behulp van digitale ontwerptools en industriële robots. Uit eerdere projecten van HvA en partners is gebleken dat deze processen het gebruik van resthout levensvatbaar kunnen maken, in het bijzonder voor toepassingen in de hospitality sector, bijvoorbeeld voor receptiebalies, hotelmeubilair en interieurdelen. CW4.0 wordt dan ook uitgevoerd in samenwerking met hospitality-ontwerpers en hotelketels. Het onderzoek concentreert zich op 1) het creëren van een digital twin (=digitale kopie van een beoogd object of proces, om dit te onderzoeken zonder het eerst te hoeven bouwen) van een ‘upcycle houtfabriek’; 2) het realiseren en beproeven van secties van de fabriek; 3) het ontwerpen en prototypen van hospitality toepassingen en 4) het evalueren van de business case van deze toepassingen en de fabriek in het algemeen. Na afloop is er kennis beschikbaar voor houtindustrie om afval te verminderen, voor Smart Industry om hun digitale technologieën toe te passen voor upcycling van materialen, en voor horecapartners om waardevolle toepassingen te creëren van resthout. Het project is een belangrijke stap in de opschaling van industriële robotproductie met circulaire materialen. Het legt een nieuwe, belangrijke verbinding tussen Smart Industry en de circulaire transitie, gericht op het aanpakken van urgente maatschappelijke uitdagingen verband houdend met materiële schaarste en de mondiale milieucrisis.
CIVITAS is a network of cities for cities dedicated to cleaner, better transport in Europe and beyond. Since it was launched by the European Commission in 2002, the CIVITAS Initiative has tested and implemented over 800 measures and urban transport solutions as a part of demonstration projects in more than 80 Living Lab cities across Europe.The ELEVATE project aims to increase the Europe-wide impact of Research and Innovation Actions on urban mobility policy-making, thereby advancing the CIVITAS community to a higher level of knowledge, exchange, impact and sustainability, while guaranteeing essential high-quality support. ELEVATE is committed to achieving the following objectives:1. Developing the CIVITAS knowledge base and transferring new knowledge.2. Enriching the current CIVITAS generation and feeding future EU initiatives.3. Building a European mobility community able to navigate transition.4. Representing CIVITAS on the international stage.Breda University of Applied Sciences is work package leader for a work package on incubation and CIVINETs.Main collaborating partners:Mobiel21 (project coordinator), DTV Consultants, INOVA, TRT, ICLEI
Aiming for a more sustainable future, biobased materials with improved performance are required. For biobased vinyl polymers, enhancing performance can be achieved by nanostructuring the material, i.e. through the use of well-defined (multi-)block, gradient, graft, comb, etc., copolymer made by controlled radical polymerization (CRP). Dispoltec has developed a new generation of alkoxyamines, which suppress termination and display enhanced end group stability compared to state-of-art CRP. Hence, these alkoxyamines are particularly suited to provide access to such biobased nanostructured materials. In order to produce alkoxyamines in a more environmentally benign and efficient manner, a photo-chemical step is beneficial for the final stage in their synthesis. Photo-flow chemistry as a process intensification technology is proposed, as flow chemistry inherently leads to more efficient reactions. In particular, photo-flow offers the benefit of significantly enhancing reactant concentrations and reducing batch times due to highly improved illumination. The aim of this project is to demonstrate at lab scale the feasibility of producing the new generation of alkoxy-amines via a photo-flow process under industrially relevant conditions regarding concentration, duration and efficiency. To this end, Zuyd University of Applied Sciences (Zuyd), CHemelot Innovation and Learning Labs (CHILL) and Dispoltec BV want to enter into a collaboration by combining the expertise of Dispoltec on alkoxyamines for CRP with those of Zuyd and CHILL on microreactor technology and flow chemistry. Improved access to these alkoxyamines is industrially relevant for initiator manufacturers, as well as producers of biobased vinyl polymers and end-users aiming to enhance performance through nanostructuring biobased materials. In addition, access in this manner is a clear demonstration for the high industrial potential of photo-flow chemistry as sustainable manufacturing tool. Further to that, students and professionals working together at CHILL will be trained in this emerging, industrially relevant and sustainable processing tool.