There are three volumes in this body of work. In volume one, we lay the foundation for a general theory of organizing. We propose that organizing is a continuous process of ongoing mutual or reciprocal influence between objects (e.g., human actors) in a field, whereby a field is infinite and connects all the objects in it much like electromagnetic fields influence atomic and molecular charged objects or gravity fields influence inanimate objects with mass such as planets and stars. We use field theory to build what we now call the Network Field Model. In this model, human actors are modeled as pointlike objects in the field. Influence between and investments in these point-like human objects are explained as energy exchanges (potential and kinetic) which can be described in terms of three different types of capital: financial (assets), human capital (the individual) and social (two or more humans in a network). This model is predicated on a field theoretical understanding about the world we live in. We use historical and contemporaneous examples of human activity and describe them in terms of the model. In volume two, we demonstrate how to apply the model. In volume 3, we use experimental data to prove the reliability of the model. These three volumes will persistently challenge the reader’s understanding of time, position and what it means to be part of an infinite field. http://dx.doi.org/10.5772/intechopen.99709
DOCUMENT
In one-dimensional disordered wires electronic states are localized at any energy. Correlations of the states at close positive energies and the AC conductivity \sigma(\omega) in the limit of small frequency are described by the Mott-Berezinskii theory. We revisit the instanton approach to the statistics of wave functions and AC transport valid in the tails of the spectrum (large negative energies). Applying our recent results on functional determinants, we calculate exactly the integral over Gaussian fluctuations around the exact two-instanton saddle point. We derive correlators of wave functions at different energies beyond the leading order in the energy difference. This allows us to calculate corrections to the Mott-Berezinskii law (the leading small-frequency asymptotic behavior of \sigma(\omega)) which approximate the exact result in a broad range of \omega. We compare our results with the ones obtained for positive energies.
DOCUMENT
We have investigated the photoionization and photodissociation of free coronene cations C24H12+ upon soft X-ray photoabsorption in the carbon K-edge region by means of a time-of-flight mass spectrometry approach. Core excitation into an unoccupied molecular orbital (below threshold) and core ionization into the continuum both leave a C 1s vacancy, that is subsequently filled in an Auger-type process. The resulting coronene dications and trications are internally excited and cool down predominantly by means of hydrogen emission. Density functional theory was employed to determine the dissociation energies for subsequent neutral hydrogen loss. A statistical cascade model incorporating these dissociation energies agrees well with the experimentally observed dehydrogenation. For double ionization, i.e., formation of intermediate C24H123+trications, the experimental data hint at loss of H+ ions. This asymmetric fission channel is associated with hot intermediates, whereas colder intermediates predominantly decay via neutral H loss.
LINK