Societal one-way directed approaches of sustainable primary school building design cause persistent physical building problems. It affects the performances of the societal challenge of designing real sustainable school buildings, as well as the educational and social processes, and its end-user performances. Conventional building construction approaches build traditionally their designs on a syntheses of dialogues and consensus during decision-making processes, due to a variety of different interests. Principals define their ambitions and requirements into a team of mainly technical domain related disciplines. There are no design methods available that connect human systems and ecosystems integrated and balance the dynamic multi-level scaled mechanisms of human needs and sustainability development factors. The presented analytic framework recognizes similarity patterns between these multi-level scaled social systems, ecosystems and sustainable development entities, qualitatively as well as quantitatively. It delivers a new polarity based dynamic system that contributes to the client briefs and physical building morphological factors from a more sustainable development base. This theoretical approach establishes Sustainability-Centered Guidelines for primary schools (SCGs) design and building.
Primary school design is balancing between end-user needs and societal interests, and between traditional and innovative approaches. In current approaches, an unbalance affects end-users’ performances and obstructs innovative school-building design. The institutional system of design should not only be more aware of adjusting the quality design indicators to end-users, but they should actually do it in combination with the increasing need for more innovation in school-building designs. Present guidelines emphasize objective rational societal and traditional interests but underestimate the subjective essences of individual end-user needs and the abilities of intelligent school buildings to meet important requirements for present and future learning environments. Based on universal human needs and dynamic mechanisms relationships, this article addresses a number of reasons that cause these mismatches. We present a theoretical analysis to establish Needs Centred Guidelines for primary school design as a methodological tool to improve the balance between the societal and end-users’ needs, and to give more insight into underlying patterns in design processes. The guidelines are based on a variety of end-user psychological, physiological and bio-physical needs. This article explains how this analytic approach contributes to the attention for end-user physical learning environment needs and to innovate school design.
In the Netherlands municipalities are searching for guidelines for a heat resilient design of the urban space. One of the guidelines which has recently been picked up is that each house should be within a 300 meter of an attractive cool spot outside. The reason is that houses might get too hot during a heat wave and therefor it is important that inhabitants have an alternative place to go. The distance of 300 m has been adopted because of practical reasons. This guideline has been proposed after a research of the University of Amsterdam of applied sciences and TAUW together with 15 municipalities.To help municipalities to take cool spots into account in their urban design the national organization for disseminating climate data has developed a distance to coolness map for all Dutch built up areas. This map shows the cool spots with a minimum of 200 m2 based on a map of the PET for a hot summer day (2*2 m2 spatial resolution). Furthermore the map shows the walking distance for each house (via streets and foot paths) to the nearest cool spot.This map helps as a starting point. Because not all cool spots are attractive cool spots. A research in 2021 showed what further basis and optional characteristics those cool spots should have: e.g. sufficiently large, combination of sun and shadow, benches, quiet, safe and clean. In fact those places should be attractive places to stay for most days of the year.With the distance to attractive cool spots municipalities can easily see which areas lack attractive cool spots. The distance to cool spot maps is therefore a way to simplify complex climate data into an understandable and practical guideline. This is an improvement as compared to using thresholds for temperatures and thresholds for duration of exceedance of those temperatures in a guideline.: Municipalities like this practical approach that combines climate adaptation with improving the livability of a city throughout the year.
Designing cities that are socially sustainable has been a significant challenge until today. Lately, European Commission’s research agenda of Industy 5.0 has prioritised a sustainable, human-centric and resilient development over merely pursuing efficiency and productivity in societal transitions. The focus has been on searching for sustainable solutions to societal challenges, engaging part of the design industry. In architecture and urban design, whose common goal is to create a condition for human life, much effort was put into elevating the engineering process of physical space, making it more efficient. However, the natural process of social evolution has not been given priority in urban and architectural research on sustainable design. STEPS stems from the common interest of the project partners in accessible, diverse, and progressive public spaces, which is vital to socially sustainable urban development. The primary challenge lies in how to synthesise the standardised sustainable design techniques with unique social values of public space, propelling a transition from technical sustainability to social sustainability. Although a large number of social-oriented studies in urban design have been published in the academic domain, principles and guidelines that can be applied to practice are large missing. How can we generate operative principles guiding public space analysis and design to explore and achieve the social condition of sustainability, developing transferable ways of utilising research knowledge in design? STEPS will develop a design catalogue with operative principles guiding public space analysis and design. This will help designers apply cross-domain knowledge of social sustainability in practice.
The pace of technology advancements continues to accelerate, and impacts the nature of systems solutions along with significant effects on involved stakeholders and society. Design and engineering practices with tools and perspectives, need therefore to evolve in accordance to the developments that complex, sociotechnical innovation challenges pose. There is a need for engineers and designers that can utilize fitting methods and tools to fulfill the role of a changemaker. Recognized successful practices include interdisciplinary methods that allow for effective and better contextualized participatory design approaches. However, preliminary research identified challenges in understanding what makes a specific method effective and successfully contextualized in practice, and what key competences are needed for involved designers and engineers to understand and adopt these interdisciplinary methods. In this proposal, case study research is proposed with practitioners to gain insight into what are the key enabling factors for effective interdisciplinary participatory design methods and tools in the specific context of sociotechnical innovation. The involved companies are operating at the intersection between design, technology and societal impact, employing experts who can be considered changemakers, since they are in the lead of creative processes that bring together diverse groups of stakeholders in the process of sociotechnical innovation. A methodology will be developed to capture best practices and understand what makes the deployed methods effective. This methodology and a set of design guidelines for effective interdisciplinary participatory design will be delivered. In turn this will serve as a starting point for a larger design science research project, in which an educational toolkit for effective participatory design for socio-technical innovation will be designed.
Physical rehabilitation programs revolve around the repetitive execution of exercises since it has been proven to lead to better rehabilitation results. Although beginning the motor (re)learning process early is paramount to obtain good recovery outcomes, patients do not normally see/experience any short-term improvement, which has a toll on their motivation. Therefore, patients find it difficult to stay engaged in seemingly mundane exercises, not only in terms of adhering to the rehabilitation program, but also in terms of proper execution of the movements. One way in which this motivation problem has been tackled is to employ games in the rehabilitation process. These games are designed to reward patients for performing the exercises correctly or regularly. The rewards can take many forms, for instance providing an experience that is engaging (fun), one that is aesthetically pleasing (appealing visual and aural feedback), or one that employs gamification elements such as points, badges, or achievements. However, even though some of these serious game systems are designed together with physiotherapists and with the patients’ needs in mind, many of them end up not being used consistently during physical rehabilitation past the first few sessions (i.e. novelty effect). Thus, in this project, we aim to 1) Identify, by means of literature reviews, focus groups, and interviews with the involved stakeholders, why this is happening, 2) Develop a set of guidelines for the successful deployment of serious games for rehabilitation, and 3) Develop an initial implementation process and ideas for potential serious games. In a follow-up application, we intend to build on this knowledge and apply it in the design of a (set of) serious game for rehabilitation to be deployed at one of the partners centers and conduct a longitudinal evaluation to measure the success of the application of the deployment guidelines.