In this paper we explore how the collaboration between Design Research and Philosophy of technology can be profitable for both disciplines. From three case studies where Philosophy of Technology theories and methods were applied in a design context we show how these projects profited from a more reflexive perspective. Then we analyse the three cases again to show how these design projects also lead to a better understanding from a Philosophy of Technology perspective. In putting the in principle rather abstract theories in design practice, the consequences become clearer and designing actual things thus provides a laboratory to test philosophical frameworks in real life. One can say that the Philosophy of Technology, besides thinking and talking, proceeds to action. Not only Philosophy of Technology with the head, but also Philosophy of Technology with the hands. Therefore, in analogy with the empirical turn in Philosophy of Technology before, we present this collaboration with design as the ‘Practical Turn in Philosophy of Technology’. In: Proceedings of DRS 2018: Design as a catalyst for change (Vol. I, pp. 190-200)
LINK
Most serious games have been developed without a proper and comprehensive design theory. To contribute to the development of such a theory, this article presents the underlying design philosophy of LEVEE PATROLLER, a game to train levee patrollers in the Netherlands. This philosophy stipulates that the design of a digital serious game is a multiobjective problem in which trade-offs need to be made. Making these trade-offs takes place in a design space defined by three equally important components: (a) Play, (b) Meaning, and (c) Reality. The various tensions between these three components result in design dilemmas and trilemmas that make it difficult to balance a serious game. Each type of tension is illustrated with one or more examples from the design of LEVEE PATROLLER.
LINK
The design of healthcare facilities is a complex and dynamic process, which involves many stakeholders each with their own set of needs. In the context of healthcare facilities, this complexity exists at the intersection of technology and society because the very design of these buildings forces us to consider the technology–human interface directly in terms of living-space, ethics and social priorities. In order to grasp this complexity, current healthcare design models need mechanisms to help prioritize the needs of the stakeholders. Assistance in this process can be derived by incorporating elements of technology philosophy into existing design models. In this article, we develop and examine the Inclusive and Integrated Health Facilities Design model (In2Health Design model) and its foundations. This model brings together three existing approaches: (i) the International Classification of Functioning, Disability and Health, (ii) the Model of Integrated Building Design, and (iii) the ontology by Dooyeweerd. The model can be used to analyze the needs of the various stakeholders, in relationship to the required performances of a building as delivered by various building systems. The applicability of the In2Health Design model is illustrated by two case studies concerning (i) the evaluation of the indoor environment for older people with dementia and (ii) the design process of the redevelopment of an existing hospital for psychiatric patients.
DOCUMENT
Within the framework of the “Greening Games” project, we will develop, test and distribute flagship didactic materials addressing the interdisciplinary nature of green digital gaming. These will be tested in selected higher education programs and finally shared as open access content for the broader academic and teaching community. It is our core strategic responsibility to educate students about the relations between digital games and environment. We believe that the more aware students of today will become greener game designers, programmers, and academic leaders of tomorrow. At the centre of our partnership’s didactic philosophy are human responsibility, ethical game design and sustainable gaming culture. Societal IssueVideo games serve as technological marvels and cultural reflections. McKenzie Wark suggests they are integral to a shared culture, fostering critical thinking. Games act as arenas for cultural values and environmental awareness. Climate-aware video games, often referred to as 'green games' or 'eco-games,' raise ecological consciousness and reconnect players with nature. For example, Riders Republic, which replicates real-world terrain using satellite imagery, inspires eco-awareness. However, the environmental footprint of video games, reliant on digital electronics and resource-intensive consoles, poses challenges. Developers, manufacturers, and gaming giants must address these impacts. Benjamin Abraham emphasizes sustainable game development as a holistic solution beyond incorporating green content.Benefit to societyBy developing teaching materials on green gaming for higher education, we create the following impact. We will…- increase the awareness of this subject among Bachelor’s and Master’s students.- enhance students’ knowledge of green gaming and their ability to integrate existing solutions into their game projects.- stimulate more research interest among research staff as well as students.- facilitate the uptake of pedagogical resources on green gaming by lecturers and professors.- create a European research community around the topic.- raise the visibility of green game studies among the game industry and wider public.
Despite increasing efforts regarding knowledge valorisation, a significant gap between knowledge development and policy practice remains. Urban Intelligence bridges this gap by bringing cutting edge knowledge to the table, developing new policy concepts and by promoting smart data use.The professorship of Urban Intelligence takes a multimodal and integrated approach by connecting knowledge of transport engineering, urban planning and urban design. Research output encompasses data-driven projects, such as ‘Multimodal Brabant’ and ‘Measurement Weeks Breda‘, which translate big data into knowledge for policy development.Furthermore, data analysis tool and data dashboards for cycling, such as ‘CyclePRINT’ have been developed. To enhance the integration of built environment and transportation, we developed the Bicycle-Oriented Development (BOD) concept. This is currently being integrated into an overarching development philosophy, ‘Multimodal Urban Development’, which integrates the optimisation of multimodal networks, location choices for new urban developments and the provision of shared mobility via mobility hubs.