PurposeThis study evaluated current fertility care forCKD patients by assessing the perspectives of nephrolo-gists and nurses in the dialysis department.MethodsTwo different surveys were distributed forthis cross-sectional study among Dutch nephrologists(N=312) and dialysis nurses (N=1211). ResultsResponse rates were 50.9% (nephrologists) and45.4% (nurses). Guidelines on fertility care were presentin the departments of 9.0% of the nephrologists and 15.6%of the nurses. 61.7% of the nephrologists and 23.6% ofthe nurses informed ≥50% of their patients on potentialchanges in fertility due to a decline in renal function.Fertility subjects discussed by nephrologists included “wishto have children” (91.2%), “risk of pregnancy for patients’health” (85.8%), and “inheritance of the disease” (81.4%).Barriers withholding nurses from discussing FD werebased on “the age of the patient” (62.6%), “insufficienttraining” (55.2%), and “language and ethnicity” (51.6%).29.2% of the nurses felt competent in discussing fertility,8.3% had sufficient knowledge about fertility, and 75.7%needed to expand their knowledge. More knowledge andcompetence were associated with providing fertility healthcare (p< 0.01). ConclusionsIn most nephrology departments, the guide-lines to appoint which care provider should provide fertil-ity care to CKD patients are absent. Fertility counselingis routinely provided by most nephrologists, nurses oftenskip this part of care mainly due to insufficiencies in self-imposed competence and knowledge and barriers based oncultural diversity. The outcomes identified a need for fer-tility guidelines in the nephrology department and trainingand education for nurses on providing fertility care. CC BY 4.0https://creativecommons.org/licenses/by/4.0/
MULTIFILE
DOCUMENT
Background: Malnutrition is an important cause of the excessive morbidity and mortality rate of dialysis patients. Frequent nocturnal home hemodialysis (NHHD) has many benefits compared with conventional thrice-weekly hemodialysis (CHD), due to the virtual absence of dietary restrictions and a much higher overall dialysis efficiency. In this observational study, we investigated whether these benefits of NHHD translate into an improved nutritional intake, with a special emphasis on protein intake. Methods: We prospectively assessed the effect of the transition of CHD to NHHD on nutritional intake (5-day dietary intake journal), normalized protein catabolic rate, and anthropometric parameters in 15 consecutive patients who started NHHD in our center between 2004 and 2009 and completed at least 8 months of follow-up. Data were collected before the transition from CHD to NHHD and 4 and 8 months after the transition. Results: Protein intake, as measured by both dietary intake journal and normalized protein catabolic rate, increased significantly after the transition from CHD to NHHD. Accordingly, phosphate intake increased significantly; however, serum phosphate levels did not increase, despite negligible phosphate binder use during NHHD. Body mass index and upper arm muscle circumference did not change significantly. Conclusion: The transition from CHD to NHHD has a positive effect on nutritional intake, in particular, protein intake. NHHD should be considered in malnourished patients on CHD. © 2012 National Kidney Foundation, Inc.
DOCUMENT
Introduction The research group Biobased Resources & Energy (BRE) of Avans focusses on recovery of valuable building blocks from low-value solid and liquid residual streams from agriculture, households and industries. For the valorisation of these residual streams, BRE looks into different biological, chemical and mechanical processes. One of the main issues in the utilisation of residual streams is economic feasibility and the recovery of multiple resources from one residual stream. Using membrane technologies in combination with biological, chemical and/or mechanical processes could offer great opportunities. Central Research Question What is the applicability of membrane technologies for valorisation of different residual streams and is it possible to integrate membrane technology in current and new biorefining projects of research group BRE: Set-up In order to reach the goal of this postdoc, 4 research questions will be answered using literature search, experimentation and modelling: 1) What membrane methods are currently (commercially) available to enhance the results of current projects in research group BRE? 2) What are the essential technical parameters for membrane separation and how can these be optimized? 3) What is the economic impact of using membrane technology in recovery of valuable building blocks from residual streams? 4) What are the effects of using membranes instead of or complementary to currently used methods on the sustainability of valorisation of residual streams? Cooperation The postdoc and the research group BRE want to extend the contact and research cooperation with (regional) businesses and (applied) universities and support and facilitate the introduction and further development of membrane technologies in the curriculum of different Avans study programmes. This will be done via internships, minor projects (together with businesses) and development of study material for courses and trainings.
This research is a collaborative project between Water Future, Looop, and MNEXT to address the valorisation of a residual stream that remain after valorisation of whey towards food and feed applications: whey permeate. This permeate is a high-volume but low-quality stream, which is currently used as a filler for mainly animal feed, but with the large amounts produced in NW-Europe it is essential to valorise whey permeate higher in the value chain, for example into a biobased resource which replace fossil-based resources in the chemical industry. To accomplish this, pre-processing steps are necessary to remove minerals. Electrodialysis (ED) can remove unwanted minerals from whey permeate by applying an electric field across its membranes. Using ED, whey permeate is expected to demineralize into a liquid which is suitable for application as biobased resource for various applications. Moreover, the extracted mineral stream can also be reused. This one-year project aims to quantify and optimize the demineralisation of whey permeates using a lab-scale ED setup to make the whey permeate stream suitable for re-use and thus reduce the environmental impact of this stream. The project involves setting up an ED setup provided by Water Future to treat whey permeates supplied by Looop, assessing the suitability of treated permeate as a biobased resource in the chemical industry and processing the produced mineral streams into new biobased resources. The result of this research will demonstrate the use of ED as a valorisation technique for whey permeates and the integration of multiple processes into a valorisation pathway to transform costly whey permeates into value-added products. MNEXT leads the research development, aiming to potentially establish a recycle strategy for resource recovery in the dairy industry. The results will be presented through educational activities, reports, digital platforms, and conferences to transfer knowledge to a broader audience.