The Nutri-Score front-of-pack label, which classifies the nutritional quality of products in one of 5 classes (A to E), is one of the main candidates for standardized front-of-pack labeling in the EU. The algorithm underpinning the Nutri-Score label is derived from the Food Standard Agency (FSA) nutrient profile model, originally a binary model developed to regulate the marketing of foods to children in the UK. This review describes the development and validation process of the Nutri-Score algorithm. While the Nutri-Score label is one of the most studied front-of-pack labels in the EU, its validity and applicability in the European context is still undetermined. For several European countries, content validity (i.e., ability to rank foods according to healthfulness) has been evaluated. Studies showed Nutri-Score's ability to classify foods across the board of the total food supply, but did not show the actual healthfulness of products within different classes. Convergent validity (i.e., ability to categorize products in a similar way as other systems such as dietary guidelines) was assessed with the French dietary guidelines; further adaptations of the Nutri-Score algorithm seem needed to ensure alignment with food-based dietary guidelines across the EU. Predictive validity (i.e., ability to predict disease risk when applied to population dietary data) could be re-assessed after adaptations are made to the algorithm. Currently, seven countries have implemented or aim to implement Nutri-Score. These countries appointed an international scientific committee to evaluate Nutri-Score, its underlying algorithm and its applicability in a European context. With this review, we hope to contribute to the scientific and political discussions with respect to nutrition labeling in the EU.
MULTIFILE
Background/Objectives: Personalized and self-initiated dietary adjustments have been shown to alleviate mental and somatic complaints. Here, we investigated the potential role of gut microbiome alterations underlying these effects. Methods: For this purpose, participants (n = 185) underwent a four-week self-initiated dietary intervention and filled out weekly questionnaires on their dietary intake, somatic and mental symptoms, and physical activity. Results: Overall, the participants lost weight, had alleviated mental and somatic complaints, reduced their total caloric and percentual carbohydrate intake, and ate less processed, party-type, and traditional Dutch food items, but ate more Pescatarian type food items, while keeping their fiber intake unaltered. Baseline and endpoint gut microbiota analyses using 16S rRNA gene sequencing revealed an overall increase in Gemmiger formicilis and reductions in Peptostreptococcaceae and Ruminococcus bromii over the four-week dietary intervention. While these bacterial alterations were considered to be beneficial for the host, they were not individually correlated with alterations in, or endpoint levels of, somatic and/or mental complaints. Instead, individual increases in Ruminococcus bicirculans (a well-known utilizer of plant cell wall polysaccharides) were strongly correlated with reductions in mental complaints, even though overall R. bicirculans remained unaltered over the course of the four-week self-initiated dierary intervention. Conclusions: Our results suggest that overall altered versus individually correlated microbiota abundances and their relations with host health characteristics over the course of a self-chosen dietary intervention may represent different levels of regulation, which remain to be further untangled.
LINK
Increasing awareness of the impact of frailty on elderly people resulted in research focusing on factors that contribute to the development and persistence of frailty including nutrition and physical activity. Most effort so far has been spent on understanding the association between protein intake and the physical domain of frailty. Far less is known for other domains of frailty: Cognition, mood, social health and comorbidity. Therefore, in the present narrative review, we elaborate on the evidence currently known on the association between protein and exercise as well as the broader concept of frailty. Most, but not all, identified studies concluded that low protein intake is associated with a higher prevalence and incidence of physical frailty. Far less is known on the broader concept of frailty. The few studies that do look into this association find a clear beneficial effect of physical activity but no conclusions regarding protein intake can be made yet. Similar, for other important aspects of frailty including mood, cognition, and comorbidity, the number of studies are limited and results are inconclusive. Future studies need to focus on the relation between dietary protein and the broader concept of frailty and should also consider the protein source, amount and timing.