BACKGROUND: Social inequalities in bodyweight start early in life and track into adulthood. Dietary patterns are an important determinant of weight development in children, towards both overweight and underweight. Therefore, we aimed to examine weight development between age 5 and 10 years by ethnicity, SES and thereafter by BMI category at age 5, to explore its association with dietary patterns at age 5.METHODS: Participants were 1765 children from the Amsterdam Born Children and their Development (ABCD) cohort that had valid data on BMI at age 5 and 10 and diet at age 5. Linear mixed model analysis was used to examine weight development between age 5 and 10 years and to assess if four previously identified dietary patterns at age 5 (snacking, full-fat, meat and healthy) were associated with weight development. Analyses were adjusted for relevant confounders, stratified by ethnicity and SES and thereafter stratified per BMI category at age 5.RESULTS: Overall, weight decreased in Dutch and high SES children and increased in non-Dutch and low/middle SES children. Across the range of bodyweight categories at age 5, we observed a conversion to normal weight, which was stronger in Dutch and high SES children but less pronounced in non-Dutch and low/middle SES children. Overall, the observed associations between weight development and dietary patterns were mixed with some unexpected findings: a healthy dietary pattern was positively associated with weight development in most groups, regardless of ethnicity and SES (e.g. Dutch B 0.084, 95% CI 0.038;0.130 and high SES B 0.096, 95% CI 0.047;0.143) whereas the full-fat pattern was negatively associated with weight development (e.g. Dutch B -0.069, 95% CI -0.114;-0.024 and high SES B -0.072, 95% CI -0.119;-0.026).CONCLUSIONS: We observed differential weight development per ethnic and SES group. Our results indicate that each ethnic and SES group follows its own path of weight development. Associations between dietary patterns and weight development showed some unexpected findings; follow-up research is needed to understand the association between dietary patterns and weight development.
DOCUMENT
Purpose – Self-efficacy has often been found to play a significant role in healthy dietary behaviours. However, self-efficacy interventions most often consist of intensive interventions. The authors aim to provide more insight into the effect of brief self-efficacy interventions on healthy dietary behaviours. Design/methodology/approach – In the present article, two randomized controlled trials are described. In study 1, a brief self-efficacy intervention with multiple self-efficacy techniques integrated on a flyer is tested, and in study 2, an online brief self-efficacy intervention with a single self-efficacy technique is tested. Findings – The results show that a brief self-efficacy intervention can directly increase vegetable intake and indirectly improve compliance to a diet plan to eat healthier. Originality/value – These findings suggest that self-efficacy interventions do not always have to be intensive to change dietary behaviours and that brief self-efficacy interventions can also lead to more healthy dietary behaviours.
DOCUMENT
Background: Our aim was to identify dietary patterns by the level of maternal education that contribute to BMI, fat mass index (FMI), and fat-free mass index (FFMI) in children at age 5 and to assess if these dietary patterns are related to BMI at age 10. Methods: Per group (low/middle/high level), Reduced Rank Regression (RRR) was used to derive dietary patterns for the response variables BMI z-score, FMI, and FFMI in 1728 children at age 5 in the Amsterdam Born Children and their Development (ABCD) cohort. Regression analyses were then used to determine the association with BMI at age 10. Results: In each group, pattern 1 was characterized by its own cluster of food groups. Low: water/tea, savory snacks, sugar, low-fat meat, and fruits; middle: water/tea, low-fat cheese, fish, low-fat dairy, fruit drink, low-fat meat, and eggs; and high: low-fat cheese, fruits, whole-grain breakfast products, and low-fat and processed meat. Additionally, in each group, pattern 1 was positively associated with BMI z-scores at age 10 (low: β ≤ 0.43 [95% CI ≤ 0.21; 0.66], p < 0.001, middle: β ≤ 0.23 [0.09; 0.36], p ≤ 0.001, and high: β ≤ 0.24 [0.18; 0.30], p < 0.001). Conclusions: The dietary patterns stratified by the level of maternal education are characterized by different food groups. But in all the groups, pattern 1 is positively associated with BMI at age 10.
MULTIFILE
Along with the rapidly growing number of disabled people participating in competitive sports, there is an increased need for (para)medical support in disability sports. Disabled athletes experience differences in body composition, metabolism, training load and habitual activity patterns compared with non-disabled athletes. Moreover, it has been suggested that the well-recognized athlete triad, and low energy availability and low bone mineral density in particular, is even a greater challenge in disabled athletes. Therefore, it is not surprising that sport nutritionists of disabled athletes have expressed an urgency for increased knowledge and insights on the nutritional demands of this group. This project aims to investigate energy expenditure, dietary intake, body composition and bone health of disabled athletes, ultimately leading to nutritional guidelines that promote health and optimal sports performance for this unique population. For this purpose, we will conduct a series of studies and implementation activities that are inter-related and build on the latest insights from sports practice, technology and science. Our international consortium is highly qualified to achieve this goal. It consists of knowledge institutes including world-leading experts in sport and nutrition research, complemented with practical insights from nutritionists working with disabled athletes and the involvement of athletes and teams through the Dutch and Norwegian Olympic committees. The international collaboration, which is a clear strength of this project, is not only focused on research, but also on the optimization of professional practice and educational activities. In this regard, the outcomes of this project will be directly available for practical use by the (para)medical staff working with disabled athletes, and will be extensively communicated to sport teams to ensure that the new insights are directly embedded into daily practice. The project outcomes will also be incorporated in educational activities for dietetics and sport and exercise students, thereby increasing knowledge of future practitioners.
Along with the rapidly growing number of disabled people participating in competitive sports, there is an increased need for (para)medical support in disability sports. Disabled athletes experience differences in body composition, metabolism, training load and habitual activity patterns compared with non-disabled athletes. Moreover, it has been suggested that the well-recognized athlete triad, and low energy availability and low bone mineral density in particular, is even a greater challenge in disabled athletes. Therefore, it is not surprising that sport nutritionists of disabled athletes have expressed an urgency for increased knowledge and insights on the nutritional demands of this group. This project aims to investigate energy expenditure, dietary intake, body composition and bone health of disabled athletes, ultimately leading to nutritional guidelines that promote health and optimal sports performance for this unique population. For this purpose, we will conduct a series of studies and implementation activities that are inter-related and build on the latest insights from sports practice, technology and science. Our international consortium is highly qualified to achieve this goal. It consists of knowledge institutes including world-leading experts in sport and nutrition research, complemented with practical insights from nutritionists working with disabled athletes and the involvement of athletes and teams through the Dutch and Norwegian Olympic committees. The international collaboration, which is a clear strength of this project, is not only focused on research, but also on the optimization of professional practice and educational activities. In this regard, the outcomes of this project will be directly available for practical use by the (para)medical staff working with disabled athletes, and will be extensively communicated to sport teams to ensure that the new insights are directly embedded into daily practice. The project outcomes will also be incorporated in educational activities for dietetics and sport and exercise students, thereby increasing knowledge of future practitioners.