Background: A higher protein intake is suggested to preserve muscle mass during aging and may therefore reduce the risk of sarcopenia.Objectives: We explored whether the amount and type (animal or vegetable) of protein intake were associated with 5-y change in mid-thigh muscle cross-sectional area (CSA) in older adults (n = 1561).Methods: Protein intake was assessed at year 2 by a Block foodfrequency questionnaire in participants (aged 70–79 y) of the Health, Aging, and Body Composition (Health ABC) Study, a prospective cohort study. At year 1 and year 6 mid-thigh muscle CSA in square centimeters was measured by computed tomography. Multiple linearregression analysis was used to examine the association between energy-adjusted protein residuals in grams per day (total, animal, and vegetable protein) and muscle CSA at year 6, adjusted for muscle CSA at year 1 and potential confounders including prevalent health conditions, physical activity, and 5-y change in fat mass.Results: Mean (95% CI) protein intake was 0.90 (0.88, 0.92) g ·kg–1 · d–1 and mean (95% CI) 5-y change in muscle CSA was −9.8 (−10.6, −8.9) cm2. No association was observed between energyadjusted total (β = −0.00; 95% CI: −0.06, 0.06 cm2; P = 0.982), animal (β = −0.00; 95% CI: −0.06, 0.05 cm2; P = 0.923), or plant(β = +0.07; 95% CI: −0.06, 0.21 cm2; P = 0.276) protein intake and muscle CSA at year 6, adjusted for baseline mid-thigh muscle CSA and potential confounders.Conclusions: This study suggests that a higher total, animal, or vegetable protein intake is not associated with 5-y change in midthigh muscle CSA in older adults. This conclusion contradicts some, but not all, previous research. This trial was registered at www.trialregister.nl as NTR6930.
BackgroundIncreased physical activity and dietary protein intake are promising interventions to prevent or treat the age-related decline in physical performance in older adults. There are well-controlled exercise as well as dietary intervention studies that show beneficial effects on physical performance in older adults. In practice, however, weekly group based exercise or nutritional programs may not be as effective. To optimise these exercise programs for community dwelling older adults, a digitally supported and personalised home-based exercise training program has been designed aiming to improve physical performance in older adults. In addition, a protein intervention in combination with the training program may further improve physical performance in older adults.MethodsThe VITAMIN study will be a cluster randomised controlled trial with three parallel arms. In total, 240 community dwelling older adults (≥ 55 years) participating in weekly group exercise are randomly allocated into: 1) regular weekly exercise program (Control group, n = 80), 2) digitally supported personalised home-based exercise training program group (VITA group, n = 80) and 3) digitally supported personalised home-based exercise training program group plus dietary protein counselling (VITA-Pro group, n = 80). The VITAMIN study aims to evaluate effectiveness of the digitally supported personalised home-based exercise training program as well as the additional value of dietary protein on physical performance after 6 months. In addition, a 12 month follow-up measurement will assess the retaining effect of the interventions. Primary outcome is physical performance measured by the Modified Physical Performance Test (M-PPT) and relevant secondary and observational outcomes include habitual physical activity and dietary intake, body composition, cognitive performance, quality of life, compliance and tablet usage. Data will be analysed by Linear Mixed Models.DiscussionTo our knowledge, the VITAMIN study is the first study that investigates the impact of home-based exercise, protein intake as well as use of persuasive technology in the population of community dwelling older adults.Trial registrationNL56094.029.16 / NTR (TC = 5888; registered 03–06-2016).
Digitally supported dietary counselling may be helpful in increasing the protein intake in combined exercise and nutritional interventions in community-dwelling older adults. To study the effect of this approach, 212 older adults (72.2 ± 6.3 years) were randomised in three groups: control, exercise, or exercise plus dietary counselling. The dietary counselling during the 6-month intervention was a blended approach of face-to-face contacts and videoconferencing, and it was discontinued for a 6-month follow-up. Dietary protein intake, sources, product groups, resulting amino acid intake, and intake per eating occasion were assessed by a 3-day dietary record. The dietary counselling group was able to increase the protein intake by 32% at 6 months, and the intake remained 16% increased at 12 months. Protein intake mainly consisted of animal protein sources: dairy products, followed by fish and meat. This resulted in significantly more intake of essential amino acids, including leucine. The protein intake was distributed evenly over the day, resulting in more meals that reached the protein and leucine targets. Digitally supported dietary counselling was effective in increasing protein intake both per meal and per day in a lifestyle intervention in community-dwelling older adults. This was predominantly achieved by consuming more animal protein sources, particularly dairy products, and especially during breakfast and lunch.
MULTIFILE