An important issue in the field of motion control of wheeled mobile robots is that the design of most controllers is based only on the robot’s kinematics. However, when high-speed movements and/or heavy load transportation are required, it becomes essential to consider the robot dynamics as well. The control signals generated by most dynamic controllers reported in the literature are torques or voltages for the robot motors, while commercial robots usually accept velocity commands. In this context, we present a velocity-based dynamic model for differential drive mobile robots that also includes the dynamics of the robot actuators. Such model has linear and angular velocities as inputs and has been included in Peter Corke’s Robotics Toolbox for MATLAB, therefore it can be easily integrated into simulation systems that have been built for the unicycle kinematics. We demonstrate that the proposed dynamic model has useful mathematical properties. We also present an application of such model on the design of an adaptive dynamic controller and the stability analysis of the complete system, while applying the proposed model properties. Finally, we show some simulation and experimental results and discuss the advantages and limitations of the proposed model.
DOCUMENT
The estimation of the pose of a differential drive mobile robot from noisy odometer, compass and beacon distance measurements is studied. The estimation problem, which is a state estimation problem with unknown input, is reformulated into a state estimation problem with known input and a process noise term. A heuristic sensor fusion algorithm solving this state-estimation problem is proposed and compared with the extended Kalman filter solution and the Particle Filter solution in a simulation experiment. https://doi.org/10.4018/IJAIML.2020010101 https://www.linkedin.com/in/john-bolte-0856134/
DOCUMENT
This study investigates what pupils aged 10-12 can learn from working with robots, assuming that understanding robotics is a sign of technological literacy. We conducted cognitive and conceptual analysis to develop a frame of reference for determining pupils' understanding of robotics. Four perspectives were distinguished with increasing sophistication; psychological, technological, function, and controlled system. Using Lego Mindstorms NXT robots, as an example of a Direct Manipulation Environment, we developed and conducted a lesson plan to investigate pupils' reasoning patterns. There is ample evidence that pupils have little difficulty in understanding that robots are man-made technological and functional artifacts. Pupils' understanding of the controlled system concept, more specifically the complex sense-reason-act loop that is characteristic of robotics, can be fostered by means of problem solving tasks. The results are discussed with respect to pupils' developing technological literacy and the possibilities for teaching and learning in primary education.
LINK