Digital innovation in education – as in any other sector – is not only about developing and implementing novel ideas, but also about having these ideas effectively used as well as widely accepted and adopted, so that many students can benefit from innovations improving education. Effectiveness, transferability and scalability cannot be added afterwards; it must be integrated from the start in the design, development and implementation processes, as is proposed in the movement towards evidence-informed practice (EIP). The impact an educational innovation has on the values of various stakeholders is often overlooked. Value Sensitive Design (VSD) is an approach to integrate values in technological design. In this paper we discuss how EIP and VSD may be combined into an integrated approach to digital innovation in education, which we call value-informed innovation. This approach not only considers educational effectiveness, but also incorporates the innovation’s impact on human values, its scalability and transferability to other contexts. We illustrate the integrated approach with an example case of an educational innovation involving digital peer feedback.
DOCUMENT
Higher educational institutions incorporate projects into their curricula, in which students, together with educators, researchers and professionals from practice, try to find solutions for real, societal problems, to develop relevant skills. Because such solutions are increasingly digital with high impact on society, ethical responsibility is an important part of these skills. In this study, we analyze two cases of digital innovation projects in higher education in which the concept of the Ethical Matrix is adapted and integrated in a Value Sensitive Design approach and applied by educators (case 1) and by students (case 2). We find that an adapted version of the Ethical Matrix supports educators and students in taking values of different types of stakeholders into account which leads to different design choices.
MULTIFILE
Expectations are high for digital technologies to address sustainability related challenges. While research into such applications and the twin transformation is growing rapidly, insights in the actual daily practices of digital sustainability within organizations is lacking. This is problematic as the contributions of digital tools to sustainability goals gain shape in organizational practices. To bridge this gap, we develop a theoretical perspective on digital sustainability practices based on practice theory, with an emphasis on the concept of sociomateriality. We argue that connecting meanings related to sustainability with digital technologies is essential to establish beneficial practices. Next, we contend that the meaning of sustainability is contextspecific, which calls for a local meaning making process. Based on our theoretical exploration we develop an empirical research agenda.
MULTIFILE
Innovation is crucial for higher education to ensure high-quality curricula that address the changing needs of students, labor markets, and society as a whole. Substantial amounts of resources and enthusiasm are devoted to innovations, but often they do not yield the desired changes. This may be due to unworkable goals, too much complexity, and a lack of resources to institutionalize the innovation. In many cases, innovations end up being less sustainable than expected or hoped for. In the long term, the disappointing revenues of innovations hamper the ability of higher education to remain future proof. Against the background of this need to increase the success of educational innovations, our colleague Klaartje van Genugten has explored the literature on innovations to reveal mechanisms that contribute to the sustainability of innovations. Her findings are synthesized in this report. They are particularly meaningful for directors of education programs, curriculum committees, educational consultants, and policy makers, who are generally in charge of defining the scope and set up of innovations. Her report offers a comprehensive view and provides food for thought on how we can strive for future-proof and sustainable innovations. I therefore recommend reading this report.
DOCUMENT
Nowadays companies need higher educated engineers to develop their competences to enable them to innovate. This innovation competence is seen as a remedy for the minor profitable business they do during the financial crises. Innovation is an element to be developed on the one hand for big companies as well as for small-and-medium sized companies through Europe to overcome this crisis. The higher education can be seen as an institution where youngsters, coming from secondary schools, who choose to learn at higher education to realize their dream, what they like to become in the professional world. The tasks of the Universities of applied Sciences are to prepare these youngsters to become starting engineers doing their job well in the companies. Companies work for a market, trying to manufacture products which customers are willing to pay for. They ask competent employees helping achieving this goal. It is important these companies inform the Universities of applied Sciences in order to modify their educational program in such a way that the graduated engineers are learning the latest knowledge and techniques, which they need to know doing their job well. The Universities of applied Sciences of Oulu (Finland) and Fontys Eindhoven (The Netherlands) are working together to experience possibilities to qualify their students on innovation development in an international setting. In the so-called: ‘Invention Project’, students are motivated to find their own invention, to design it, to prepare this idea for prototyping and to really manufacture it. Organizing the project, special attention is given to communication protocol between students and also between teachers. Students have meetings on Thursday every week through Internet connection with the communication program OPTIMA, which is provided by the Oulu University. Not only the time difference between Finland and the Netherlands is an issue to be organized also effective protocols how to provide each other relevant information and also how to make in an effective way decisions are issues. In the paper the writers will present opinions of students, teachers and also companies in both regions of Oulu and Eindhoven on the effectiveness of this project reaching the goal students get more experienced to set up innovative projects in an international setting. The writers think this is an important and needed competence for nowadays young engineers to be able to create lucrative inventions for companies where they are going to work for. In the paper the writers also present the experiences of the supervising conditions during the project. The information found will lead to success-factors and do’s and don’ts for future projects with international collaboration.
DOCUMENT
Nowadays, digital tools for mathematics education are sophisticated and widely available. These tools offer important opportunities, but also come with constraints. Some tools are hard to tailor by teachers, educational designers and researchers; their functionality has to be taken for granted. Other tools offer many possible educational applications, which require didactical choices. In both cases, one may experience a tension between a teacher’s didactical goals and the tool’s affordances. From the perspective of Realistic Mathematics Education (RME), this challenge concerns both guided reinvention and didactical phenomenology. In this chapter, this dialectic relationship will be addressed through the description of two particular cases of using digital tools in Dutch mathematics education: the introduction of the graphing calculator (GC), and the evolution of the online Digital Mathematics Environment (DME). From these two case descriptions, my conclusion is that students need to develop new techniques for using digital tools; techniques that interact with conceptual understanding. For teachers, it is important to be able to tailor the digital tool to their didactical intentions. From the perspective of RME, I conclude that its match with using digital technology is not self-evident. Guided reinvention may be challenged by the rigid character of the tools, and the phenomena that form the point of departure of the learning of mathematics may change in a technology-rich classroom.
LINK
Aim: Improvement and harmonization of European clinical pharmacology and therapeutics (CPT) education is urgently required. Because digital educational resources can be easily shared, adapted to local situations and re-used widely across a variety of educational systems, they may be ideally suited for this purpose. Methods: With a cross-sectional survey among principal CPT teachers in 279 out of 304 European medical schools, an overview and classification of digital resources was compiled. Results: Teachers from 95 (34%) medical schools in 26 of 28 EU countries responded, 66 (70%) of whom used digital educational resources in their CPT curriculum. A total of 89 of such resources were described in detail, including e-learning (24%), simulators to teach pharmacokinetics and/or pharmacodynamics (10%), virtual patients (8%), and serious games (5%). Together, these resources covered 235 knowledge-based learning objectives, 88 skills, and 13 attitudes. Only one third (27) of the resources were in-part or totally free and only two were licensed open educational resources (free to use, distribute and adapt). A narrative overview of the largest, free and most novel resources is given. Conclusion: Digital educational resources, ranging from e-learning to virtual patients and games, are widely used for CPT education in EU medical schools. Learning objectives are based largely on knowledge rather than skills or attitudes. This may be improved by including more real-life clinical case scenarios. Moreover, the majority of resources are neither free nor open. Therefore, with a view to harmonizing international CPT education, more needs to be learned about why CPT teachers are not currently sharing their educational materials.
MULTIFILE
Technological developments go fast and are interrelated and multi-interpretable. As consumer needs change, the technological possibilities to meet those needs are constantly evolving and new technology providers introduce new disruptive business models. This makes it difficult to predict what the world of tomorrow will look like for an organization and that makes the risks for organizations substantial. In this context, it is difficult for organizations to determine what constitutes a good strategy to adopt digital developments. This paper describes a first step of a study with the objective to design a method for organizations to formulate a future-proof strategy in a rapidly changing, complex and ambiguous context. More specifically, this paper describes the results of a sequence of three focus groups that were held with a group of eight experts, with extensive experience as members of the decision making unit in organizations. The objectives of these sessions were to determine possible solutions for the outlined challenge in order to provide direction for continuation and scoping of the following research phases.
MULTIFILE
The COVID-19 pandemic has revealed the importance for university teachers to have adequate pedagogical and technological competences to cope with the various possible educational scenarios (face-to-face, online, hybrid, etc.), making use of appropriate active learning methodologies and supporting technologies to foster a more effective learning environment. In this context, the InnovaT project has been an important initiative to support the development of pedagogical and technological competences of university teachers in Latin America through several trainings aiming to promote teacher innovation. These trainings combined synchronous online training through webinars and workshops with asynchronous online training through the MOOC “Innovative Teaching in Higher Education.” This MOOC was released twice. The first run took place right during the lockdown of 2020, when Latin American teachers needed urgent training to move to emergency remote teaching overnight. The second run took place in 2022 with the return to face-to-face teaching and the implementation of hybrid educational models. This article shares the results of the design of the MOOC considering the constraints derived from the lockdowns applied in each country, the lessons learned from the delivery of such a MOOC to Latin American university teachers, and the results of the two runs of the MOOC.
DOCUMENT
Nowadays companies need higher educated engineers to develop their competences to enable them to innovate. This innovation competence is seen as a remedy for the minor profitable business they do during the financial crises. Innovation is an element to be developed on the one hand for big companies as well as for small-and-medium sized companies through Europe to overcome this crisis. The higher education can be seen as an institution where youngsters, coming from secondary schools, who choose to learn at higher education to realize their dream, what they like to become in the professional world. The tasks of the Universities of applied Sciences are to prepare these youngsters to become starting engineers doing their job well in the companies. Companies work for a market, trying to manufacture products which customers are willing to pay for. They ask competent employees helping achieving this goal. It is important these companies inform the Universities of applied Sciences in order to modify their educational program in such a way that the graduated engineers are learning the latest knowledge and techniques, which they need to know doing their job well. The Universities of applied Sciences of Oulu (Finland) and Fontys Eindhoven (The Netherlands) are working together to experience possibilities to qualify their students on innovation development in an international setting. In the socalled: ‘Invention Project’, students are motivated to find their own invention, to design it, to prepare this idea for prototyping and to really manufacture it. Organizing the project, special attention is given to communication protocol between students and also between teachers. Students have meetings on Thursday every week through Internet connection with the communication program OPTIMA, which is provided by the Oulu University. Not only the time difference between Finland and the Netherlands is an issue to be organized also effective protocols how to provide each other relevant information and also how to make in an effective way decisions are issues. In the paper the writers will present opinions of students, teachers and also companies in both regions of Oulu and Eindhoven on the effectiveness of this project reaching the goal students get more experienced to set up innovative projects in an international setting. The writers think this is an important and needed competence for nowadays young engineers to be able to create lucrative inventions for companies where they are going to work for. In the paper the writers also present the experiences of the supervising conditions during the project. The information found will lead to successfactors and do’s and don’ts for future projects with international collaboration.
DOCUMENT