Quality of life serves a reference against which you can measure the various domains of your own life or that of other individuals, and that can change over time. This definition of the World Health Organization encompasses many elements of daily living, including features of the individual and the environment around us, which can either be the social environment, the built environment, or other environmental aspects. This is one of the rationales for the special issue on “Quality of Life: The Interplay between Human Behaviour, Technology and the Environment”. This special issue is a joint project by the Centre of Expertise Health Innovation of the Hague University of Applied Sciences in The Netherlands. The main focus of this Special Issue is how optimising the interplay between people, the environment, and technology can enhance people’s quality of life. The focus of the contributions in this special issue is on the person or end‐user and his or her environment, both the physical, social, and digital environment, and on the interaction between (1) people, (2) health, care, and systems, and (3) technology. Recent advances in technology offer a wide range of solutions that support a healthy lifestyle, good quality of life, and effective and efficient healthcare processes, for a large number of end‐users, both patients/clients from minus 9 months until 100+ years of age, as well as practitioners/physicians. The design of new services and products is at the roots of serving the quality of life of people. Original article at MDPI; DOI: https://doi.org/10.3390/ijerph16245106 (Editorial of Special Issue with the same title: "Quality of Life: The Interplay between Human Behaviour, Technology and the Environment")
MULTIFILE
On the Open Research Amsterdam website, the Digital Production Research Group presented its main projects and achievements.--Dutch:Verbinding onderwijs, onderzoek en praktijkIn 2017 is het Robot Lab van de Hogeschool van Amsterdam (HvA) opgericht. Zij transformeren onder andere sloophout tot nieuwe meubels!In deze collectie leest u meer over het Robot Lab en de projecten en die hier worden uitgevoerd.
LINK
Aim: There is often a gap between the ideal of involving older persons iteratively throughout the design process of digital technology, and actual practice. Until now, the lens of ageism has not been applied to address this gap. The goals of this study were: to voice the perspectives and experiences of older persons who participated in co-designing regarding the design process; their perceived role in co-designing and intergenerational interaction with the designers; and apparent manifestations of ageism that potentially influence the design of digital technology. Methods: Twenty-one older persons participated in three focus groups. Five themes were identified using thematic analysis which combined a critical ageism ‘lens’ deductive approach and an inductive approach. Results: Ageism was experienced by participants in their daily lives and interactions with the designers during the design process. Negative images of ageing were pointed out as a potential influencing factor on design decisions. Nevertheless, positive experiences of inclusive design pointed out the importance of “partnership” in the design process. Participants defined the “ultimate partnership” in co-designing as processes in which they were involved from the beginning, iteratively, in a participatory approach. Such processes were perceived as leading to successful design outcomes, which they would like to use, and reduced intergenerational tension. Conclusions: This study highlights the potential role of ageism as a detrimental factor in how digital technologies are designed. Viewing older persons as partners in co-designing and aspiring to more inclusive design processes may promote designing technologies that are needed, wanted and used.
The projectThe overarching goal of DIGNITY, DIGital traNsport In and for socieTY, is to foster a sustainable, integrated and user-friendly digital travel eco-system that improves accessibility and social inclusion, along with the travel experience and daily life of all citizens. The project delves into the digital transport eco-system to grasp the full range of factors that might lead to disparities in the uptake of digitalised mobility solutions by different user groups in Europe. Analysing the digital transition from both a user and provider’s perspective, DIGNITY looks at the challenges brought about by digitalisation, to then design, test and validate the DIGNITY approach, a novel concept that seeks to become the ‘ABCs for a digital inclusive travel system’. The approach combines proven inclusive design methodologies with the principles of foresight analysis to examine how a structured involvement of all actors – local institutions, market players, interest groups and end users – can help bridge the digital gap by co-creating more inclusive mobility solutions and by formulating user-centred policy frameworks.The objectivesThe idea is to support public and private mobility providers in conceiving mainstream digital products or services that are accessible to and usable by as many people as possible, regardless of their income, social situation or age; and to help policy makers formulate long-term strategies that promote innovation in transport while responding to global social, demographic and economic changes, including the challenges of poverty and migration.The missionBy focusing on and involving end-users throughout the process of designing policies, products, or services, it is possible to reduce social exclusion while boosting new business models and social innovation. The end result that DIGNITY is aiming for is an innovative decision support tool that can help local and regional decision-makers formulate digitally inclusive policies and strategies, and digital providers design more inclusive products and services.The approachThe DIGNITY approach combines analysis with concrete actions to make digital mobility services inclusive over the long term. The approach connects users’ needs and requirements with the provision of mobility services, and at the same time connects those services to the institutional framework. It is a multi-phase process that first seeks to understand and bridge the digital gap, and then to test, evaluate and fine-tune the approach, so that it can be applied in other contexts even after the project’s end.Partners: ISINNOVA (Italy), Mobiel 21 (Belgium), Universitat Politechnica deCatalunya Spain), IZT (Germany), University of Cambridge (UK), Factualconsulting (Spain), Barcelona Regional Agencia (Spain), City of Tilburg(Netherlands), Nextbike (Germany), City of Ancona (Italy), MyCicero (Italy),Conerobus (Italy), Vlaams Gewest (Belgium)
Management policy for protected species is currently often based on literature reviews and expert judgement, even though it requires tailor-made species knowledge on a local level. While wildlife management should preferably be evidence based, tailor-made field data is seldom used in current practices, because it is hardly available, difficult to collect and expensive. Recent development of digital technology is changing the field of wildlife management with “more, better, faster and cheaper” ways of data collection. Especially automated collection of field data with different types of sensors is promising, whereas miniaturization and low cost mass-production increase availability and use of these sensors. For collection of field data about predator-prey interactions, there is a need to develop wireless sensor networks that automatically identify different species in a community, while they record their spatially explicit data and their behaviour. Therefore, we will put together a consortium of partners that will develop a EU LIFE programme proposal, with the focus to develop a sensor network necessary to automatically monitor multiple species (i.e., species communities) for species conservation management. The consortium will consist of Van Hall Larenstein, Sovon Dutch Centre for Field Ornithology, the Dutch Mammal Society, Sensing Clues and DIKW intelligence. It will bring together a strong mix of expert knowledge on applied species conservation and wildlife management, ecological field research, wildlife intelligence, and handling and analysis of big data. This project matches the Top sector High-tech Systems & Materials, and revolves around 4 distinct phases: selection of potential consortium partners, exploration of the problem, working towards a common action perspective and writing a EU LIFE programme proposal. We will use knowledge co-creation techniques to explore the first three project phases.