Growing volumes of wood are being used in construction, interior architecture, and product design, resulting in increasing amounts of wood waste. Using this waste is challenging, because it is too labor-intensive to process large volumes of uneven wood pieces that vary in geometry, quality, and origin. The project “Circular Wood for the Neighborhood” researches how advanced computational design and robotic production approaches can be used to create meaningful applications from waste wood. shifting the perception of circular wood as a simply harvested stream, towards a material with unique aesthetics of its own right. The complexity of the material is suggested to be tackled by switching from the object-oriented design towards designing soft systems. The system developed uses a bottom-up approach where each piece of wood aggregates according to certain parameters and the designed medium is mainly rule-sets and connections. The system is able to produce many options and bring the end-user for a meaningful co-design instead of choosing from the pre-designed options. Material-driven design algorithms were developed, which can be used by designers and end-users to design bespoke products from waste wood. In the first of three case studies, a small furniture item (“coffee table”) was designed from an old door, harvested from a renovation project. For its production, two principle approaches were developed: with or without preprocessing the wood. The principles were tested with an industrial robotic arm and available waste wood. A first prototype was made using the generated aggregation from the system, parametric production processes and robotic fabrication.
from the Article: "Operating rooms (ORs) more and more evolve into high-tech environments with increasing pressure on finances, logistics, and a not be neglected impact on patient safety. Safe and cost-effective implementation of technological equipment in ORs is notoriously difficult to manage, specifically as generic implementation activities omit as hospitals have implemented local policies for implementations of technological equipment. )e purpose of this study is to identify success factors for effective implementations of new technologies and technological equipment in ORs, based on a systematic literature review. We accessed ten databases and reviewed included articles. )e search resulted in 1592 titles for review, and finally 37 articles were included in this review. We distinguish influencing factors and resulting factors based on the outcomes of this research. Six main categories of influencing factors on successful implementations of medical equipment in ORs were identified: “processes and activities,” “staff,” “communication,” “project management,” “technology,” and “training.” We identified a seventh category “performance” referring to resulting factors during implementations. We argue that aligning the identified influencing factors during implementation impacts the success, adaptation, and safe use of new technological equipment in the OR and thus the outcome of an implementation. The identified categories in literature are considered to be a baseline, to identify factors as elements of a generic holistic implementation model or protocol for new technological equipment in ORs."
MULTIFILE
Mkb-bedrijven in de maakindustrie vragen steeds meer om de-assemblage oplossingen, voor het uit elkaar halen van producten als deze End-of-Life zijn. De wens van bedrijven om ‘het goede’ te doen voor mens en klimaat, speelt een rol, maar duurzaamheid wordt natuurlijk ook steeds meer afgedwongen door CSRD, CSDDD, ESPR en andere regelgeving. Gezien de tekorten op de arbeidsmarkt zal dit (deels) geautomatiseerd en m.b.v. digitalisering aangepakt moeten worden. Veel bestaande producten zijn ontwikkeld zonder aandacht te besteden aan de-assemblage (ook wel demanufacturing). Werkvoorbereiding voor demanufacturing is nog niet geprofessionaliseerd. ‘Disassemblability’ ofwel de mate waarin een product gemakkelijk uit elkaar gehaald kan worden is een belangrijke variabele (Turkbay Romano et al., 2024). Kennis hierover, die wel door praktijkervaring aanwezig is, is niet geparametriseerd of gekoppeld aan specifieke producteigenschappen, waardoor elk demanufacturing plan ‘to-order’ gemaakt moet worden. Ook triage (Moeten we dit doen? Hoe gaan we het doen?) bij intake van productseries of individuele producten is belangrijk, maar criteria om te bepalen of hergebruik op product, component of materiaalniveau de moeite waard is ontbreken vaak. De stakeholders van dit project zien de noodzaak om stappen te zetten richting het vormgeven van de ‘demanufacturing guide’ in een productpaspoort, en het slim vullen hiervan, zodat ze benodigde de-assemblage handelingen en tools ‘smart’ kunnen bepalen, op basis van de -nu vaak beperkte- beschikbare productinformatie. Het doel van het project is dan ook te komen tot een gestandaardiseerde beschrijving voor de-assemblage, op basis van o.a. het fysieke product zelf, als onderdeel van een digitaal productpaspoort. Zo’n aanpak draagt bij aan hogere productiviteit, maar ook aan het beter voorspellen van de-assemblage kosten en daarmee het selecteren van producten met een interessante circulaire business case.