This paper describes some explorations on the concept of disassemblability as an important circularity indicator for products because of its severe impact on reuse value. Although usefulness of the concept for determining disassembly strategies and for improving circular product design clearly shows in earlier studies, the link with Industry 4.0 (I4.0)-related process innovation is still underexposed. For further technical development of the field of remanufacturing, research is needed on tools & training for operators, diagnostics, disassembly/repair instructions and forms of operator support. This includes the use of IoT and cobots in remanufacturing lines for automatic disassembly, sorting and recognition methods; providing guidance for operators and reduction of change-over times. A prototype for a disassembly work cell for a mobile phone has been developed together with researchers and students. This includes the removal of screws by means of a cobot using both vision & the available info in the product’s Bill-Of-Materials, the removal of covers, opening of snap fits and replacement of modules. This prototyping demonstrates that it is relatively easy to automate disassembly operations for an undamaged product, that has been designed with repairability in mind and for which product data and models are available. Process innovations like robotisation influence the disassemblability in a positive way, but current indicators like a Disassembly Index (DI) can’t reflect this properly. This study therefore concludes with suggestions for an evaluation of disassemblability by looking at the interaction between product, process and resources in a coherent way.
MULTIFILE
Author supplied: A manufacturing process can be described by a sequence or combination of production steps. Based on this approach a manufacturing system has been developed that is capable to produce several different products in parallel. A batch size of one unit is possible and the production is pull-driven. The manufacturing system is based on agent technology and a special so-called product agent collects information about the assembly process. This agent will be connected to the actual product and can guide the disassembly process at the end of the products life. The agent will show the inverse steps to be taken to take a product apart. This approach can be used in the agent based manufacturing process described in this paper but the concept can also be used for other manufacturing systems. The paper discusses the possibilities as well as the restrictions of the method proposed here.
DOCUMENT
This chapter explains in brief what is needed to achieve more sustainable manufacturing processes. It develops both aspects of sustainable, economic, and technical feasibility with most focus on the latter. Remanufacturing processes are described together with relevant factors that enhance their effectivity and efficiency. An overview is given of what kind of shopfloor innovations are required in the near future and some suggestions on how digital and other Industry 4.0 technologies could help to move toward circular manufacturing.
MULTIFILE
Mattresses for the healthcare sector are designed for robust use with a core foam layer and a polyurethane-coated polyester textile cover. Nurses and surgeons indicate that these mattresses are highly uncomfortable to patients because of poor microclimatic management (air, moisture, temperature, friction, pressure regulation, etc) across the mattress, which can cause pressure ulcers (in less than a day). The problem is severe (e.g., extra recovery time, medication, increased risk, and costs) for patients with wounds, infection, pressure-sensitive decubitus. There are around 180,000 waterproof mattresses in the healthcare sector in the Netherlands, of which yearly 40,000 mattresses are discarded. Owing to the rapidly aging population it is expected to increase the demand for these functional mattresses from 180,000 to 400,000 in the next 10 years in the healthcare sector. To achieve a circular economy, Dutch Government aims for a 50% reduction in the use of primary raw materials by 2030. As of January 1, 2022, mattress manufacturers and importers are obliged to pay a waste management contribution. Within the scope of this project, we will design, develop, and test a circular & functional mattress for the healthcare (cure & care) sector. The team of experts from knowledge institutes, SMEs, hospital(s), branch-organization joins hands to design and develop a functional (microclimate management, including ease of use for nurses and patients) mattress that deals with uncomfortable sleeping and addresses the issue of pressure ulcers thereby overall accelerating the healing process. Such development addresses the core issue of circularity. The systematic research with proper demand articulation leads to V-shape verification and validation research methodology. With design focus and applied R&D at TRL-level (4-6) is expected to deliver the validated prototype(s) offering SMEs an opportunity to innovate and expand their market. The knowledge will be used for dissemination and education at Saxion.