Existing unreinforced masonry buildings in seismically active regions are in urgent need of consolidation and preservation against seismic action to prevent damage and loss of financial resources. In this research, an experimental study of externally confined brick masonry piers, which are frequently preferred as load-bearing elements in historical buildings, was conducted. The confinement system included a combination of open-grid basalt textile and mortar. Eighteen masonry pier specimens were produced using solid bricks collected from a historical building constructed in approximately the 1930s and a local mortar with substandard mechanical characteristics to simulate mortar properties in existing heritage buildings. All the square/rectangular pier specimens were tested under concentric compressive loads. In general, confinement of the tested textile-reinforced mortar (TRM) improved the energy dissipation of the masonry piers significantly. A comparison was made between the experimental results and theoretical predictions using the available analytical models. The compressive strengths predicted by the models are satisfactory.
LINK
The additive manufacturing (AM) of high-quality products requires knowledge of the 3D-printing process and the related design guidelines. Allthough AM has been around for some years, many engineers still lack this knowledge. Therefore, Fontys University of Applied Sciences sets great store by training of engineers, education of engineering students and knowledge sharing on this topic. As an appetiser, this article offers a beginner’s course.
Greenhouses are in need of new monitoring tools, as they size grow bigger and bigger but still using old labour intensive methods ways of caring for the crop. HiPerGreen is set out to create a new tool, which can drive onto the pre-existing heating pipes to provide a birds eye perspective for image analysis purposes. However, clear images are necessary for consistent usable data. This presentation resumes the steps taken during the reporting: the optimisation of a rail based system towards clear images. This is done through analysis of resulting images, understanding vibrations and oscillations, and finally presents results based on prototyping. Moreover, a re-design of the electronics and hardware was also introduce to facilitate prototyping. The results are promising, laying within the requirements.
The project virtually breaks down a large timber structure into pieces and simultaneously simulates and tests each piece in a different laboratory or facility. In this way, unique aspects of each facility can be used at the same time. The experiments take place in a synchronized way, which is a difficult task considering 4 countries (UK, Canada, Greece and the Netherlands) will work at the same time for testing one hypothetical timber structure. Geographically distributed hybrid testing blue sky research, timber structure testing including soil-structure-interactionHYSTERESIS project aims to use geographically distributed hybrid testing for providing experimental evidence for energy dissipation and SSI response of buildings composed of mass timber and CLT panels. The project outcomes will give a boost to the efforts of building multi-story timber structures in areas with wind and/or earthquake loading conditions. The particularities of the problem in hand and the need for testing in large scale while taking into account the SSI, dictate using a novel hybrid testing approach.
The EU Climate and Energy Policy Framework targets a 40% reduction in Greenhouse Gases (GHGs) emission by companies (when compared to 1990’s values) in 2030 [1]. Preparing for that future, many companies are working to reach climate neutrality in 2030. For water and wastewater treatment plants aeration processes could represent up to 70% of the whole energy consumption of the plant. Thus, a process which must be carefully evaluated if climate neutrality is a target. VortOx is an alternative to reduce power consumption in aeration processes. It is structured to test the applicability of geometrically constrained vortices in a hyperbolic funnel (aka “Schauberger”- funnel) as an innovative aeration technique for this industry. Recent investigations have shown that such systems allow an average of 12x more oxygen transfer coefficients (KLa) than that of comparable methods like air jets or impellers [10]. However, the system has a relatively small hydraulic retention time (HRT), which compromises its standard oxygen transfer ratio (SOTR). Additionally, so far, the system has only been tested in pilot (lab) scale. Vortox will tackle both challenges. Firstly, it will test geometry and flow adaptations to increase HRT keeping the same KLa levels. And secondly, all will be done using a real scale hyperbolic funnel and real effluent from Leeuwarden’s wastewater treatment plant demo-site. If proven feasible, Vortox can be a large step towards climate neutral water and wastewater treatment systems.