Distribution structures, as studied in this paper, involve the spatial layout of the freight transport and storage system used to move goods between production and consumption locations. Decisions on this layout are important to companies as they allow them to balance customer service levels and logistics costs. Until now there has been very little descriptive research into the factors that drive decisions about these structures. Moreover, the literature on the topic is scattered across various research streams. In this paper we review and consolidate this literature, with the aim to arrive at a comprehensive list of factors. Three relevant research streams were identified: Supply Chain Management (SCM), Transportation and Geography. The SCM and Transportation literature mostly focus on distribution structure including distribution centre (DC) location selection from a viewpoint of service level and logistics costs factors. The Geography literature focuses on spatial DC location decisions and resulting patterns mostly explained by location factors such as labour and land availability. Our review indicates that the main factors that drive decision-making are “demand level”, “service level”, “product characteristics”, “logistics costs”, “labour and land”, “accessibility” and “contextual factors”. The main trade-off influencing distribution structure selection is “service level” versus “logistics costs”. Together, the research streams provide a rich picture of the factors that drive distribution structure including DC location selection. We conclude with a framework that shows the relative position of these factors. Future work can focus on completing the framework by detailing out the sub factors and empirically testing the direction and strength of relationships. Cooperation between the three research streams will be useful to further extend and operationalize the framework.
The circular economy (CE) is heralded as reducing material use and emissions while providing more jobs and growth. We explored this narrative in a series of expert workshops, basing ourselves on theories, methods and findings from science fields such as global environmental input-output analysis, business modelling, industrial organisation, innovation sciences and transition studies. Our findings indicate that this dominant narrative suffers from at least three inconvenient truths. First, CE can lead to loss of GDP. Each doubling of product lifetimes will halve the related industrial production, while the required design changes may cost little. Second, the same mechanism can create losses of production jobs. This may not be compensated by extra maintenance, repair or refurbishing activities. Finally, ‘Product-as-a-Service’ business models supported by platform technologies are crucial for a CE transition. But by transforming consumers from owners to users, they lose independence and do not share in any value enhancement of assets (e.g., houses). As shown by Uber and AirBNB, platforms tend to concentrate power and value with providers, dramatically affecting the distribution of wealth. The real win-win potential of circularity is that the same societal welfare may be achieved with less production and fewer working hours, resulting in more leisure time. But it is perfectly possible that powerful platform providers capture most added value and channel that to their elite owners, at the expense of the purchasing power of ordinary people working fewer hours. Similar undesirable distributional effects may occur at the global scale: the service economies in the Global North may benefit from the additional repair and refurbishment activities, while economies in the Global South that are more oriented towards primary production will see these activities shrink. It is essential that CE research comes to grips with such effects. Furthermore, governance approaches mitigating unfair distribution of power and value are hence essential for a successful circularity transition.
LINK
This paper studies the factors that drive distribution structure design (DSD), which includes the spatial layout of distribution channels and location choice of logistics facilities. We build on a generic framework from existing literature, which we validate and elaborate using interviews among industry practitioners. Empirical evidence was collected from 18 logistics experts and 33 decision-makers affiliated to shippers and logistics service providers from the fashion, consumer electronics and online retail sectors. It turns out that interviewees share similar rankings of main factors across industries, and even confirm factor weights from earlier research established using multi-criteria decision analysis, which would indicate that the framework is sector- neutral at the highest level. The importance attached to subfactors varies between sectors according to our expectations. We were able to identify 20 possible new influencing subfactors. The results may support managers in their decision-making process, and regional policy-makers with regard to spatial planning and regional marketing. The framework is a basis for researchers to help improve further quantitative DSD support models.
Climate change has impacted our planet ecosystem(s) in many ways. Among other alterations, the predominance of long(er) drought periods became a point of concern for many countries. A good example is The Netherlands, a country known by its channels and abundant surface water, which has listed “drought effect mitigation” among the different topics in the last version of its “Innovation Agenda” (Kennis en Innovatie Agenda, KIA). There are many challenges to tackle in such scenario, one of them is solutions for small/decentralized communities that suffer from dry-up of surface reservoirs and have no groundwater source available. Such sites are normally far from big cities and coastal zones, which impair the supply via distribution networks. In such cases, Atmospheric Water Generation (AWG) technologies are a plausible solution. These systems have relatively small production rates (few m3 per day), but they can still provide enough volume for cities with up to 100k inhabitants. Despite having real scale systems already installed in different locations worldwide, most systems are between TRL 5 and 6. Thus need further development. SunCET proposes an in-situ evaluation of an AWG system (WaterWin) developed by two different Dutch companies (Solaq and Sustainable Eyes) in the Brazilian semi-arid state of Ceará. The cooperation with NHL Stenden will provide the necessary expertise, analytical and technical support to conduct the tests. The state government of Ceará built an infrastructure to support the realization of in-situ tests, as they want to further accelerate technology implementation in the state. Such structure will make it possible to share costs and decrease total investments for the SMEs. Finally, it is also intended to help establishing partnerships between Dutch SMEs and Brazilian end users, i.e. municipalities of the Ceará state and small agriculture companies in the region.