Positive Energy Districts (PEDs) are potential high-impact climate change mitigation actions towards low carbon or even climate neutral cities. This implies that the energy performance and greenhouse gas emissions of PEDs need to be assessed. To this end, an accounting methodology, metrics, supporting (accounting) tools, and reporting are necessary that capture the full energy and climate impact of PEDs. The European Commission's Building Energy Specification Table (BEST) provides a methodological approach for calculating the energy balance of PEDs. The BEST is a formal requirement of the European Commission's proposal process, with respect to the Horizon 2020 funding program. An improved methodology for calculating the annual energy balance of a of PED, based on the international standard ISO52000, was developed by the Making City project in 2020. In this paper, we evaluate and compare accounting methods for assessing the energy performance of PEDs and conclude on their use and shortcomings. The hypothesis to be explored is that current accounting practices are based on accounting at a building level and alternative methodologies are needed to capture the full impacts at a district level. To this end, we apply the current approaches on the ATELIER project's PED pilot in Buiksloterham, Amsterdam, which will serve as a case study to illustrate the differences in outcomes and in the use of the results in evaluation and policy making. Consequently, we reflect and recommend on improved approaches and methodologies.
The sustainable energy transition asks for new and innovative solutions in the way society, government, energy market and clients (end users) approach energy distribution and consumption. The energy transition provides great opportunity to develop innovative solutions where in the dense built environment district heating and cooling are being strongly advocated.Traditionally, the energy systems in urban districts have been regulated by a top-down approach. With the rise of local and distributed sustainable sources for urban heating and cooling, the complexity of the heat/cold chain is increasing. Therefore, an organic and bottom-up approach is being requested, where the public authorities have a facilitating and/or directive role. There is a need for a new and open framework for collaboration between stakeholders. A framework that provides insight into the integral consideration of heating and cooling solutions on district level in terms of: organisation, technology and economy (OTE). This research therefore focuses on developing this integral framework towards widely supported heating and cooling solutions among district stakeholders.Through in-depth interviews, workshops and focus groups discussions, relevant stakeholders in local district heating/cooling of varying backgrounds and expertise have been consulted. This has led to two pillars in a framework. Firstly the definition of Key Success Factors and Key Performance Indicators to evaluate technical solutions in light of the respective context. Secondly, an iterative decision making process among district stakeholders where technical scenarios, respective financial business cases and market organisation are being negotiated. Fundamental proposition of the framework is the recurrent interaction between OTE factors throughout the entire decision making process. In order to constantly assure broad-based support, the underlying nature of possible barriers for collaboration are identified in a stakeholder matrix, informing a stakeholder strategy. It reveals an open insight of the interests, concerns, and barriers among all stakeholders, where solutions can be developed effectively.
District heating (DH) has a major potential to increase the efficiency, security, and sustainability of energy management at the community scale. However, there is a huge challenge for decision makers due to the lack of knowledge about thermal energy demand during a year. https://www.mdpi.com/1996-1073/14/17/5462
MULTIFILE