Integrated curricula seem promising for the increase of attention on science and technology in primary education. A clear picture of the advantages and disadvantages of integration efforts could help curriculum innovation. This review has focussed on integrated curricula in primary education from 1994 to 2011. The integrated curricula were categorized according to a taxonomy of integration types synthesized from the literature. The characteristics that we deemed important were related to learning outcomes and success/fail factors. A focus group was formed to facilitate the process of analysis and to test tentative conclusions. We concluded that the levels in our taxonomy were linked to (a) student knowledge and skills, the enthusiasm generated among students and teachers, and the teacher commitment that was generated; and (b) the teacher commitment needed, the duration of the innovation effort, the volume and comprehensiveness of required teacher professional development, the necessary teacher support, and the effort needed to overcome tensions with standard curricula. Almost all projects were effective in increasing the time spent on science at school. Our model resolves Czerniac’s definition problem of integrating curricula in a productive manner, and it forms a practical basis for decision-making by making clear what is needed and what output can be expected when plans are being formulated to implement integrated education.
The first part of this paper will start with an introduction of the general context of the education system in The Netherlands. This is followed by a presentation of the general characteristics of the teacher education system, of the balance between school autonomy and government control, and of the general policies concerning teacher quality. The second part will give an elaboration of the system of teacher education by introducing five major developments that have shaped teacher education in the past twenty years, and by giving a more detailed description of each type of teacher education. In the third part, I reflect on the role of the government in steering innovations and quality improvement in the area of teacher education
We are well into the 21st century now and the urgency for lifelong learning is growing especially regarding numeracy. There are major societal and policy pressures on education to prepare citizens for a complex and technologized society, in literature referred to as “21st century skills” (Voogt & ParejaRoblin, 2012), “global competences” (OECD, 2016a) or “the 4th industrial revolution” (Schwab, 2016). International research has demonstrated the economic and social value of literacy and numeracy knowledge and skills (Hanushek and Wöbmann, 2012; Grotlüschen, et al. 2016). With respect to numeracy (and/or mathematics) education, we explore the implications of these pressures to the mathematical demands at individuals living and working in modern life, and what is expected from numeracy education as society moves further into the 21st century. New means of communication and types of services have changed the way individuals interact with governments, institutions, services and each other, and social and economic transformations have in turn, changed the nature of the demand for skills as well.