What are the essential components of a doctorate program in mathematics education or didactics of mathematics concerning research, coursework, seminars, and collaboration? The purpose of this study was to learn from doctoral students across the world about how their programs in mathematics education are preparing them for research and teaching in mathematics education; how their programs provide academic research and writing support; and what they view as missing from their experiences. Online surveys, along with follow-up interviews from a subset of survey respondents, indicated that doctoral students from 17 different countries stressed the importance of international collaboration, examining fundamental theories of learning mathematics, and identified a need for more support with academic writing.
LINK
Currently, various higher education (HE) institutes develop flexible curricula for various reasons, including promoting accessibility of HE, the societal need for more self-regulated professionals who engage in life-long learning, and the desire to increase motivation of students. Increasing flexibility in curricula allows students to choose for example what they learn, when they learn, how they learn, where they learn, and/or with whom. However, HE institutes raise the question of what preferences and needs different stakeholders have with regard to flexibility, so that suitable choices can be made in the design of policies, curricula, and student support programs. In this workshop, we focus on student preferences and share recent insights from research on HE students' preferences regarding flexible education. Moreover, we use participants’ expertise to identify new (research) questions to further explore what students’ needs imply for several domains, namely curriculum-design, student support that is provided by educators/staff, policy, management, and the professional field. Firstly, a conceptual framework on flexible education and student’s preferences will be presented. Secondly, participants reflect in groups on student personas. Then, discussion groups have a Delphi-based discussion to collect new ideas for research. Finally, participants share the outcomes on a ‘willing wall’ and a ‘wailing wall’.
MULTIFILE
Obtaining credits, studying for exams, attending classes, engaging with fellow students and lecturers, living alone or with others, and taking part in extra-curricular activities: there is a fair amount for students in higher education to take in. There are also numerous external factors — such as the COVID-19 pandemic and the changing labour and housing market — that affect students. However, students experience these situations differently and deal with them in different ways. How can we ensure that, notwithstanding these stress factors and differences, as many students as possible become and remain engaged and energised? Happier students tend to be more engaged and generally achieve better study results.1 That is why student well-being is also a widely researched and important topic. The search is on for measures to promote student well-being and success. Having a clear idea of how things are going for a student and what they need is a starting point. This booklet helps readers to identify different student profiles and understand what is needed to improve student success. We zoom in on two key aspects of student success: engagement and emotional exhaustion.
MULTIFILE
KnowledgeFlows in Marine Spatial Planning - Sharing Innovation in Higher Education(KnowledgeFlows) aims at further enforcing the European higher education community to meet the growing demands for knowledge, skills and innovation within the still emerging field of marine or maritime spatial planning (MSP).Marine Spatial Planning (MSP) is an emerging governmental approach towards a more effective use of the sea. MSP is of great interest in Europe and can be considered a societal process to balance conflicting interests of maritime stakeholders and the marine environment. Many different activities take place at sea, ranging from shipping, fisheries, to offshore wind energy activities. Simultaneously, new and evolving policies focus on strategies to integrate different marine demands in space and resources. MSP is now legally binding in the EU and is much needed approach to manage and organize the use of the sea, while also protecting the environment.KnowledgeFlows will contribute to the development of new innovative approaches to higher education and training on MSP by means of problem-based learning schemes, transdisciplinary collaboration, and advanced e-learning concepts. KnowledgeFlows builds on results from former project outputs (Erasmus+ Strategic Partnership for Marine Spatial Planning SP-MSP), such as the online learning platform MSP Education Arena (https://www.sp-msp.uol.de).The strategic partnership consists of a transnational network of experts both in research and in practice based in the north Atlantic, Baltic Sea and North Sea Regions including Aalborg University (DK, lead partner), The University of Oldenburg (D), the University of Liverpool (U.K.), the University of Nantes (F), the Leibniz Institute for Baltic Sea Research (D), the Breda University of Applied Sciences (NL), University of Ulster (U.K.), and the Finnish Environment Institute (FI). Gothenburg University, also being a higher education organisation, will be associated partner.Furthermore, three international organisations, the Marine Spatial Planning Research Network, the Baltic inter-governmental VASAB and the pan-Nordic Nordregio will be involved in the partnership as associated organisations deeply rooted in the MSP community of practice.The further improvement of curricula, exchange of knowledge and experts, and transparency and recognition of learning outcomes to reach higher qualifications in MSP are key components of KnowledgeFlows. A mutual learning environment for MSP higher education will enable problem-driven innovation among students and their educators from research and governance also involving stakeholders. Related activities on intellectual outputs, multiplier events and lecturing will be carried out by all participating organisations.The intellectual outputs are related to three major contributions to the European higher education landscape:1) an advanced level international topical MSP course (Step-up MSP)2) digital learning facilities and tools (MSP Education Arena)3) designing problem-based learning in MSP (MSP directory)The advanced level inter-institutional topical MSP course will include different teaching and training activities within a problem-based learning environment. Digital learning facilities enabling communication and training will include a further enrichment of the MSP Education Arena platform for students, practitioners and lecturers for including modules forcollaborate learning activities, documentation and dissemination, mobilisation/recruitment, thesis opportunities, placements/internships. Designing problem-based learning in MSP will include topics as; the design of didactics and methods; guidance for lecturers, supervisors and students; evaluation and quality assurance; assessment.Five multiplier events back to back or as part of conferences within the MSP community will be organised to mainstream the outputs and innovative MSP didactics among other universities and institutions.Different teaching and training activities feeds into the intellectual output activities, which will include serious gaming sessions (MSP Challenge (http://www.mspchallenge.info/) and others), workshops, excursions, courses/classes as well as a conference with a specific focus on facilitating the exchange of innovative ideas and approaches among students at bachelor´s, master´s and doctoral level and the MSP community of practice.Project management meetings (twice a year) will assure coherence in project planning and implementation. As the core focus of the strategic partnership is on collaboration, mutual learning, and innovation among educators, students, and practitioners in order to meet actual and future needs regarding knowledge exchange and training within the MSP community, the project will be designed to have long lasting effects.Results
Circular agriculture is an excellent principle, but much work needs to be done before it can become common practice in the equine sector. In the Netherlands, diversification in this sector is growing, and the professional equine field is facing increasing pressure to demonstrate environmentally sound horse feeding management practices and horse owners are becoming more aware of the need to manage their horses and the land on which they live in a sustainable manner. Horses should be provided with a predominantly fibre-based diet in order to mimic their natural feeding pattern, however grazing impacts pasture differently, with a risk of overgrazing and soil erosion in equine pastures. Additionally, most horses receive supplements not only with concentrates and oils, but also with minerals. Though the excess minerals are excreted in the manure of horses, these minerals can accumulate in the soil or leach to nearby waterways and pollute water resources. Therefore, the postdoc research aims to answer the main question, “What horse feeding practices and measurements are needed to reduce and prevent environmental pollution in the Netherlands?” The postdoc research is composed of two components; a broad survey-based study which will generate quantitative data on horse feeding management and will also obtain qualitative data on the owners’ engagement or willingness of horse owners to act sustainably. Secondly, a field study will involve the collection of detailed data via visits to horse stables in order to gather data for nutritional analysis and to collect fecal samples for mineral analysis. Students, lecturers and partners will actively participate in all phases of the planned research. This postdoc research facilitates learning and intends to develop a footprint calculator for sustainable horse feeding to encompass the complexity of the equine sector, and to improve the Equine Sports and Business curriculum.