Wetterskip Fryslân, Hogeschool Van Hall Larenstein en Indymo voeren onderzoek uit naar de toepassingsmogelijkheden van onderwaterdrones. Er zijn veel toepassingen mogelijk, zoals waterkwaliteitsmonitoring en inspectie van kunstwerken. Met drones kan het watersysteem beter in beeld worden gebracht, wat uiteindelijk de waterkwaliteit ten goede zal komen. Een beeld van de huidige inzetbaarheid van onderwaterdrones en toekomstige ontwikkelingen.
MULTIFILE
The decomposition of a body is influenced by burial conditions, making it crucial to understand the impact of different conditions for accurate grave detection. Geophysical techniques using drones have gained popularity in locating clandestine graves, offering non-invasive methods for detecting surface and subsurface irregularities. Ground-penetrating radar (GPR) is an effective technology for identifying potential grave locations without disturbance. This research aimed to prototype a drone system integrating GPR to assist in grave localization and to develop software for data management. Initial experiments compared GPR with other technologies, demonstrating its valuable applicability. It is suitable for various decomposition stages and soil types, although certain soil compositions have limitations. The research used the DJI M600 Pro drone and a drone-based GPR system enhanced by the real-time kinematic (RTK) global positioning system (GPS) for precision and autonomy. Tests with simulated graves and cadavers validated the system’s performance, evaluating optimal altitude, speed, and obstacle avoidance techniques. Furthermore, global and local planning algorithms ensured efficient and obstacle-free flight paths. The results highlighted the potential of the drone-based GPR system in locating clandestine graves while minimizing disturbance, contributing to the development of effective tools for forensic investigations and crime scene analysis.
MULTIFILE
Hoofdstuk 15 15.1 Introduction 15.2 An international law perspective 15.3 The American position 15.4 International human rights developments 15.5 Effective remedy and reparations 15.6 Reflections References In the international arena there are some encouraging developments in relation to accountability and transparency for the use of armed drones. It is increasingly recognized that remote pilotless aircraft have become part of modern warfare, and that sometimes they are also used outside the context of armed conflict. Subsequently, both international humanitarian and human rights law can apply. The issue of access to justice, however, receives less explicit socio-political attention. Victims of armed remote pilotless aircraft strikes meet countless challenges in effectuating their right to an effective remedy. Often even a formal recognition that a strike has taken place is lacking. Furthermore, the states involved fail to publicly release information about their own investigations. This makes it difficult for those affected to substantiate their status as a victim and seek justice, including reparations. The international community should, in addition to urging involved states to independently and impartially investigate all armed drone strikes, ensure that access to an effective remedy for civilian victims, whether on an international, transnational or national level, becomes a reality.
LINK
Inleiding en praktijkvraag De groeiende wereldbevolking gecombineerd met de klimaatverandering zorgt voor een de noodzaak tot een duurzame voedselvoorziening (KIA missie Landbouw, voedsel & water). Een significante reductie van gewasbestrijdingsmiddelen is daarbinnen een belangrijke doelstelling. Robotica maakt als technologie motor van de precisielandbouw plant specifieke precisie-bestrijding mogelijk. Het projectconsortium onderzoekt een semiautonoom samenwerkend grond-luchtrobot platform voor de precisielandbouw. Projectdoelstelling De doelstelling van het project AGRobot Platform is dan ook: “Onderzoek de mogelijkheden van een semi-autonoom samenwerkend grond-lucht robotplatform voor de precisielandbouw”. De hoofddoelstelling wordt binnen dit project beantwoordt door de deliverables uit de volgende subdoelstellingen: 1. Case studie onderzoek naar de mogelijke voordelen van het grond-luchtrobotplatform 2. Onderzoek naar de benodigde technologieën voor een grond-luchtrobotplatform 3. Ontwikkelen van een eerste (mogelijk case-specifieke) demonstrator 4. Ontwikkelen van (nieuwe) samenwerkingsvormen. Vraagsturing & Netwerkvorming Riwo Engineering is een industriële automatiseeerder die met zijn grondrobots en control-besturingssytemen actief is in de veeteelt. DRONEXpert gebruikt hyperspectrale camera’s onder drones voor het bemeten van gewassen. Saxion mechatronica onderzoekt met de onderzoekslijn unmanned robotic systems hoe de nieuwste robotica technologieën systemen mogelijk maakt voor ongestructureerde omgevingen. De partners bezitten gezamenlijk een enorm netwerk (TValley, Space53, euRobotics) en klanten om via de case studies de kansen te achterhalen en te realiseren. Innovatie Nergens ter wereld is een samenwerkend grond-luchtrobot platform actief in de precisielandbouw. Voor OostNederland, met naast veel robotica kennis ook veel Agro-kennis, zal het project letterlijk de KIEM zijn voor nieuwe projecten waaruit de valorisatie kansen richting heel Europa gaan. Activiteitenplan & Projectorganisatie Het project wordt geleid door de lector Dr. Ir. D.A.Bekke en uitgevoerd door Abeje Mersha en Mark Reiling samen met het deelnemend MKB. Het project bestaat uit 4 werkpakketten die achtereenvolgens antwoordt geven op de gestelde subdoelstellingen. Aan elk werkpakket zijn deliverables gekoppeld.
Noord-Nederland telt ongeveer 70.000 ha akkerbouw, waarvan 14.000 ha pootaardappelen. De totale jaaromzet van de pootaardappelteelt bedraagt ongeveer 230 miljoen euro (exclusief de omzet van toeleverende en dienstverlenende bedrijven). Van alle productielanden samen, neemt Noord-Nederland met 23% van de wereldwijde export van gecertificeerd pootgoed een absolute toppositie in. Om deze toppositie te behouden, is continu aandacht voor productiviteit, duurzaamheid en kwaliteitsverbetering vereist. Bij de huidige bedrijfsomvang kan een geautomatiseerde gewasinspectie daarbij zeer behulpzaam zijn. Kwalitatief hoogwaardiger inspectie tegen lagere kosten kan de kwaliteit en de kostprijs van gewassen in de precisielandbouw verbeteren. Voor pootgoedtelers is het belangrijk te weten wat de kwaliteit van de plant is, in relatie met de gepote aardappel. Doelstelling is het verkrijgen van inzicht in de methoden, technieken en algoritmen die nodig zijn voor het automatisch bepalen van het opkomstgedrag van individuele aardappelplanten met behulp van low-cost drones. Koelhuis Bergmans stelt de akkervelden waar opnames van gemaakt worden beschikbaar. Ana Vita heeft veel ervaring in het ontwikkelen van nieuwe markten in de precisielandbouw. De NHL is in het bezit van een ROC-light ontheffing om met drones tot 4 kg te mogen vliegen. Tevens onderzoekt de NHL welke methoden, technieken en algoritmen gebruikt kunnen worden. Dit project levert een dataset met hierin periodiek opgenomen beelden van aardappelplanten, methodes voor het bepalen van individuele aardappelplantgroei en een beschrijving van de onderzoeksresultaten in de vorm van een (wetenschappelijke) paper.
In de land- en tuinbouwsector worden UAV’s gebruikt om op basis van sensorwaarnemingen telers adviezen te geven om de teelt te optimaliseren. De buitenteelt is verder in de ontwikkeling en het gebruik van UAV’s dan de binnenteelt. In de buitenteelt kunnen drones autonoom vliegen via een vooraf ingestelde route m.b.v. GPS-waypoint. Het is niet mogelijk om deze GPS-techniek toe te passen in de bedekte teelten i.v.m. onvoldoende GPS-signaal in de kassen. Daarnaast wordt er in de kas hinder ondervonden van verschillende obstakels, zoals gewasdraden, gewaswagens en personeel. Kortom er zijn grote verschillen tussen binnen- en buitenteelt op dit gebied. De uitdaging is om een UAV autonoom te laten navigeren in de binnenteelt. Het idee achter dit project is om een vooronderzoek uit te voeren naar de mogelijkheden om drones autonoom te laten navigeren in de glastuinbouw. Indien dit mogelijk is kunnen hyperspectrale camera’s die momenteel worden gebruikt in de open teelten ook toegepast worden in de binnenteelt. De Twirre architectuur biedt een goed uitgangspunt om het autonoom vliegen met drones in een kas te ontwikkelen. De projectpartners hebben met dit KIEM project de volgende doelstellingen: • Inventariseren welke sensoren gebruikt kunnen worden om in een kas de positie van een drone te bepalen, • Inventariseren welke sensoren gebruikt kunnen worden om in een kas obstakels te kunnen detecteren die ontweken moeten worden • keuzes maken voor positie- en antibots-sensoren, deze integreren in de Twirre architectuur, • een drone met de uitgebreide Twirre architectuur testen in een kas, de positie nauwkeurigheid te meten en de botspreventie te testen, • de beelden van de camera worden op basis van positie informatie en standhoekinformatie van de camera aan elkaar gestitcht tot een grote foto die de hele kas beslaat, • daarmee de basis leggen voor een vervolgproject gericht op het ontwikkelen van een beslissingsondersteunend platform dat op basis van sensorwaarnemingen de teler adviezen geeft om zijn teelt te optimaliseren.