Kunnen wadi’s en raingardens overal? Hoe regel je het beheer? Wat is de ecologische waarde van een wadi of raingarden? Hoe overtuig ik de gemeente? In sneltreinvaart toont Floris Boogaard (Hanzehogeschool Groningen en Deltares) honderden inspirerende voorbeelden. Hij geeft daarmee antwoord op de meest gestelde vragen over wadi’s en raingardens: het kan (bijna) overal en de woonomgeving wordt er leefbaarder van.
LINK
The adaptation of urbanised areas to climate change is currently one of the key challenges in the domain of urban policy. The diversity of environmental determinants requires the formulation of individual plans dedicated to the most significant local issues. This article serves as a methodic proposition for the stage of retrieving data (with the PESTEL and the Delphi method), systemic diagnosis (evaluation of risk and susceptibility), prognosis (goal trees, goal intensity map) and the formulation of urban adaptation plans. The suggested solution complies with the Polish guidelines for establishing adaptation plans. The proposed methodological approach guarantees the participation of various groups of stakeholders in the process of working on urban adaptation plans, which is in accordance with the current tendencies to strengthen the role of public participation in spatial management. https://doi.org/10.12911/22998993/81658
MULTIFILE
Worldwide, rivers face challenges due to human and climatic pressures. Floods, droughts, pollution, damming and hydropeaking are only a few examples of these pressures, and influence the way rivers flow. Climate change adaptation projects increase the incentive to domesticate rivers, often legitimised through expert views on (future) vulnerability and risk. This emerging river imaginary dominates current debates in many rivers in our world. River imaginaries reflect spatially bound hydrosocial territories in which multiple actors on multiple scales from multiples sectors operate to reach varying objectives. They include water flows, ecological systems, climate conditions, hydraulic infrastructure, financial means, institutional arrangements, legal frameworks and information/knowledge hubs. In the context of climate change adaptation, river imaginaries are strongly dependent on the extent to which climate change is expected to influence rivers through a mixture of probable, possible, desirable or preferable versions of a (future) river. As such, knowledge-structures of future making are scrutinised in this research by emphasising on the role of change, the role of futures and the role of experts. This presentation aims to elucidate how river imaginaries have influenced river management under climate change adaptation that resulted in large infrastructural projects. Through a study of the Meuse river, a concrete case of a imaginary came into being in the Dutch-Belgian Border-Meuse trajectory. Moreover, preliminary result from adaptation projects in the marshlands of the lower Magdalena in Colombia strengthen the dominate imaginary of technocratic and ecocentric approaches to climate change adaptation where an expert view on local knowledge dominates.
LINK
INXCES will use and enhance innovative 3D terrain analysis and visualization technology coupled with state-of-the-art satellite remote sensing to develop cost-effective risk assessment tools for urban flooding, aquifer recharge, ground stability and subsidence. INXCES will develop quick scan tools that will help decision makers and other actors to improve the understanding of urban and peri-urban terrains and identify options for cost effective implementation of water management solutions that reduce the negative impacts of extreme events, maximize beneficial uses of rainwater and stormwater for small to intermediate events and provide long-term resilience in light of future climate changes. The INXCES approach optimizes the multiple benefits of urban ecosystems, thereby stimulating widespread implementation of nature-based solutions on the urban catchment scale.INXCES will develop new innovative technological methods for risk assessment and mitigation of extreme hydroclimatic events and optimization of urban water-dependent ecosystem services at the catchment level, for a spectrum of rainfall events. It is widely acknowledged that extreme events such as floods and droughts are an increasing challenge, particularly in urban areas. The frequency and intensity of floods and droughts pose challenges for economic and social development, negatively affecting the quality of life of urban populations. Prevention and mitigation of the consequences of hydroclimatic extreme events are dependent on the time scale. Floods are typically a consequence of intense rainfall events with short duration. In relation to prolonged droughts however, a much slower timescale needs to be considered, connected to groundwater level reductions, desiccation and negative consequences for growing conditions and potential ground – and building stability.INXCES will take a holistic spatial and temporal approach to the urban water balance at a catchment scale and perform technical-scientific research to assess, mitigate and build resilience in cities against extreme hydroclimatic events with nature-based solutions.INXCES will use and enhance innovative 3D terrain analysis and visualization technology coupled with state-of-the-art satellite remote sensing to develop cost-effective risk assessment tools for urban flooding, aquifer recharge, ground stability and subsidence. INXCES will develop quick scan tools that will help decision makers and other actors to improve the understanding of urban and peri-urban terrains and identify options for cost effective implementation of water management solutions that reduce the negative impacts of extreme events, maximize beneficial uses of rainwater and stormwater for small to intermediate events and provide long-term resilience in light of future climate changes. The INXCES approach optimizes the multiple benefits of urban ecosystems, thereby stimulating widespread implementation of nature-based solutions on the urban catchment scale.
Cities: Action-perspectives for a climate-proof, drought-resilient, and water-sensitive built environment Recurring droughts severely impacted the Dutch built Environment , causing financial, environmental, and social effects. Climate change and urban developments are expected to aggravate this. Although municipalities recognize drought as critical risk, few have prepared for it. This is due to a lack of understanding of the urban water balance under drought and the vulnerability of urban water use(r)s, ambiguity in role and responsibility, and missing action-perspectives. Thirsty Cities aims to address this by developing, collecting, connecting and delivering in a transdisciplinary approach the needed knowledge, insights, tooling, principles, designs, infrastructures and action-perspectives for a climate-proof, drought-resilient, and water-sensitive built environment.Dorstige Steden: Handelingsperspectieven voor een klimaatbestendige, droogteweerbare, en waterrobuuste bebouwde omgeving.De Nederlandse bebouwde omgeving is herhaaldelijk geraakt door droogte, met financiële, ecologische en maatschappelijke effecten. Klimaatverandering en stedelijke ontwikkelingen zullen het droogte-risico naar verwachting doen toenemen. Alhoewel overheden droogte als een risico erkennen, hebben weinigen zich daarop voorbereid. Gebrek aan inzicht in de stedelijke waterbalans onder droogte, de kwetsbaarheid van stedelijke watergebruikers, onduidelijkheid in rol en verantwoordelijkheid van betrokken actoren, en ontbrekende handelingsperspectieven liggen hieraan ten grondslag. ‘Dorstige Steden’ draagt middels trans-disciplinair onderzoek bij aan een klimaatbestendige, droogteweerbare, en waterrobuuste bebouwde omgeving door de benodigde kennis, inzichten, instrumentaria, principes en ontwerpen te ontwikkelen, verzamelen en verbinden en handelingsperspectieven te formuleren.