This study focuses on SME networks of design and high-tech companies in Southeast Netherland. By highlighting the personal networks of members across design and high-tech industries, the study attempts to identify the main brokers in this dynamic environment. In addition, we investigate whether specific characteristics are associated with these brokers. The main contribution of the paper lies in the fact that, in contrast to most other work, it is quantitative and that it focuses on brokers identified in an actual network (based on both suppliers and users of the knowledge infrastructure). Studying the phenomenon of brokerage provides us with clear insights into the concept of brokerage regarding SME networks in different fields. In particular we highlight how third parties contribute to the transfer and development of knowledge. Empirical results show, among others that the most influential brokers are found in the nonprofit and science sector and have a long track record in their branch.
The capacity to deal with digital transformation is a valuable asset for established organizations, and employees play a crucial role in this process. This study contributes to the understanding of employees’ sensemaking of digital transformation in the tour operating industry. Using prior digital transformation research, construal-level theory (CLT), and dynamic change perspectives, our scholarly work focuses on the complexities of organizational change in a digital transformation context. Although employees generally support digital transformation, our findings show that their perceptions change over time across a range of specific challenges experienced during the employee change journey. Our findings stress the importance of adopting a social exchange lens in digital transformation knowledge as this represents deep structure change that might cause well-designed transformation processes to fail. Implications for hospitality and tourism management are discussed.
MULTIFILE
31-12-2023Background The plantar intrinsic foot muscles (PIFMs) have a role in dynamic functions, such as balance and propulsion, which are vital to walking. These muscles atrophy in older adults and therefore this population, which is at high risk to falling, may benefit from strengthening these muscles in order to improve or retain their gait performance. Therefore, the aim was to provide insight in the evidence for the effect of interventions anticipated to improve PIFM strength on dynamic balance control and foot function during gait in adults. Methods A systematic literature search was performed in five electronic databases. The eligibility of peer-reviewed papers, published between January 1, 2010 and July 8, 2020, reporting controlled trials and pre-post interventional studies was assessed by two reviewers independently. Results from moderate- and high-quality studies were extracted for data synthesis by summarizing the standardized mean differences (SMD). The GRADE approach was used to assess the certainty of evidence. Results Screening of 9199 records resulted in the inclusion of 11 articles of which five were included for data synthesis. Included studies were mainly performed in younger populations. Low-certainty evidence revealed the beneficial effect of PIFM strengthening exercises on vertical ground reaction force (SMD: − 0.31-0.37). Very low-certainty evidence showed that PIFM strength training improved the performance on dynamic balance testing (SMD: 0.41–1.43). There was no evidence for the effect of PIFM strengthening exercises on medial longitudinal foot arch kinematics. Conclusions This review revealed at best low-certainty evidence that PIFM strengthening exercises improve foot function during gait and very low-certainty evidence for its favorable effect on dynamic balance control. There is a need for high-quality studies that aim to investigate the effect of functional PIFM strengthening exercises in large samples of older adults. The outcome measures should be related to both fall risk and the role of the PIFMs such as propulsive forces and balance during locomotion in addition to PIFM strength measures.
MULTIFILE
19-01-2022