ObjectiveThis study investigates the feasibility of delivering inspiratory muscle training as part of the physical therapy treatment for patients with post-COVID dyspnoea.DesignMixed-methods pilot study.Subjects/patientsPatients with complaints of dyspnoea after COVID-19 infection and their physical therapists.MethodsThe Amsterdam University of Applied Sciences and the Amsterdam University Medical Centers conducted this study. Participants performed daily inspiratory muscle training at home for 6 weeks, consisting of 30 repetitions against a pre-set resistance. The primary outcome was feasibility assessed as acceptability, safety, adherence and patient- and professional experience obtained through diaries and semi-structured interviews. The secondary outcome was maximal inspiratory pressure.ResultsSixteen patients participated. Nine patients and 2 physical therapists partook in semi-structured interviews. Two patients dropped out before initiating the training. Adherence was 73.7%, and no adverse events occurred. Protocol deviations occurred in 29.7% of the sessions. Maximal inspiratory pressure changed from 84.7% of predicted at baseline to 111.3% at follow-up. Qualitative analysis identified barriers to training: ‘Getting acquainted with the training material’ and ‘Finding the right schedule’. Facilitators were: ‘Support from physical therapists’ and ‘Experiencing improvements’.ConclusionDelivering inspiratory muscle training to patients with post-COVID dyspnoea seems feasible. Patients valued the simplicity of the intervention and reported perceived improvements. However, the intervention should be carefully supervised, and training parameters adjusted to individual needs and capacity.
DOCUMENT
Abstract: Background: Chronic obstructive pulmonary disease (COPD) and asthma have a high prevalence and disease burden. Blended self-management interventions, which combine eHealth with face-to-face interventions, can help reduce the disease burden. Objective: This systematic review and meta-analysis aims to examine the effectiveness of blended self-management interventions on health-related effectiveness and process outcomes for people with COPD or asthma. Methods: PubMed, Web of Science, COCHRANE Library, Emcare, and Embase were searched in December 2018 and updated in November 2020. Study quality was assessed using the Cochrane risk of bias (ROB) 2 tool and the Grading of Recommendations, Assessment, Development, and Evaluation. Results: A total of 15 COPD and 7 asthma randomized controlled trials were included in this study. The meta-analysis of COPD studies found that the blended intervention showed a small improvement in exercise capacity (standardized mean difference [SMD] 0.48; 95% CI 0.10-0.85) and a significant improvement in the quality of life (QoL; SMD 0.81; 95% CI 0.11-1.51). Blended intervention also reduced the admission rate (relative ratio [RR] 0.61; 95% CI 0.38-0.97). In the COPD systematic review, regarding the exacerbation frequency, both studies found that the intervention reduced exacerbation frequency (RR 0.38; 95% CI 0.26-0.56). A large effect was found on BMI (d=0.81; 95% CI 0.25-1.34); however, the effect was inconclusive because only 1 study was included. Regarding medication adherence, 2 of 3 studies found a moderate effect (d=0.73; 95% CI 0.50-0.96), and 1 study reported a mixed effect. Regarding self-management ability, 1 study reported a large effect (d=1.15; 95% CI 0.66-1.62), and no effect was reported in that study. No effect was found on other process outcomes. The meta-analysis of asthma studies found that blended intervention had a small improvement in lung function (SMD 0.40; 95% CI 0.18-0.62) and QoL (SMD 0.36; 95% CI 0.21-0.50) and a moderate improvement in asthma control (SMD 0.67; 95% CI 0.40-0.93). A large effect was found on BMI (d=1.42; 95% CI 0.28-2.42) and exercise capacity (d=1.50; 95% CI 0.35-2.50); however, 1 study was included per outcome. There was no effect on other outcomes. Furthermore, the majority of the 22 studies showed some concerns about the ROB, and the quality of evidence varied. Conclusions: In patients with COPD, the blended self-management interventions had mixed effects on health-related outcomes, with the strongest evidence found for exercise capacity, QoL, and admission rate. Furthermore, the review suggested that the interventions resulted in small effects on lung function and QoL and a moderate effect on asthma control in patients with asthma. There is some evidence for the effectiveness of blended self-management interventions for patients with COPD and asthma; however, more research is needed. Trial Registration: PROSPERO International Prospective Register of Systematic Reviews CRD42019119894; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=119894
DOCUMENT
Abstract Background: COVID-19 was first identified in December 2019 in the city of Wuhan, China. The virus quickly spread and was declared a pandemic on March 11, 2020. After infection, symptoms such as fever, a (dry) cough, nasal congestion, and fatigue can develop. In some cases, the virus causes severe complications such as pneumonia and dyspnea and could result in death. The virus also spread rapidly in the Netherlands, a small and densely populated country with an aging population. Health care in the Netherlands is of a high standard, but there were nevertheless problems with hospital capacity, such as the number of available beds and staff. There were also regions and municipalities that were hit harder than others. In the Netherlands, there are important data sources available for daily COVID-19 numbers and information about municipalities. Objective: We aimed to predict the cumulative number of confirmed COVID-19 infections per 10,000 inhabitants per municipality in the Netherlands, using a data set with the properties of 355 municipalities in the Netherlands and advanced modeling techniques. Methods: We collected relevant static data per municipality from data sources that were available in the Dutch public domain and merged these data with the dynamic daily number of infections from January 1, 2020, to May 9, 2021, resulting in a data set with 355 municipalities in the Netherlands and variables grouped into 20 topics. The modeling techniques random forest and multiple fractional polynomials were used to construct a prediction model for predicting the cumulative number of confirmed COVID-19 infections per 10,000 inhabitants per municipality in the Netherlands. Results: The final prediction model had an R2 of 0.63. Important properties for predicting the cumulative number of confirmed COVID-19 infections per 10,000 inhabitants in a municipality in the Netherlands were exposure to particulate matter with diameters <10 μm (PM10) in the air, the percentage of Labour party voters, and the number of children in a household. Conclusions: Data about municipality properties in relation to the cumulative number of confirmed infections in a municipality in the Netherlands can give insight into the most important properties of a municipality for predicting the cumulative number of confirmed COVID-19 infections per 10,000 inhabitants in a municipality. This insight can provide policy makers with tools to cope with COVID-19 and may also be of value in the event of a future pandemic, so that municipalities are better prepared.
LINK