Purpose: To facilitate the design of viable business models by proposing a novel business model design framework for viability. Design: A design science research method is adopted to develop a business model design framework for viability. The business model design framework for viability is demonstrated by using it to design a business model for an energy enterprise. The aforementioned framework is validated in theory by using expert opinion. Findings: It is difficult to design viable business models because of the changing market conditions, and competing interests of stakeholders in a business ecosystem setting. Although the literature on business models provides guidance on designing viable business models, the languages (business model ontologies) used to design business models largely ignore such guidelines. Therefore, we propose a business model design framework for viability to overcome the identified shortcomings. The theoretical validation of the business model design framework for viability indicates that it is able to successfully bridge the identified shortcomings, and it is able to facilitate the design of viable business models. Moreover, the validation of the framework in practice is currently underway. Originality / value: Several business model ontologies are used to conceptualise and evaluate business models. However, their rote application will not lead to viable business models, because they largely ignore vital design elements, such as design principles, configuration techniques, business rules, design choices, and assumptions. Therefore, we propose and validate a novel business model design framework for viability that overcomes the aforementioned shortcomings.
BACKGROUND: The concept of osteoarthritis (OA) heterogeneity is evolving and gaining renewed interest. According to this concept, distinct subtypes of OA need to be defined that will likely require recognition in research design and different approaches to clinical management. Although seemingly plausible, a wide range of views exist on how best to operationalize this concept. The current project aimed to provide consensus-based definitions and recommendations that together create a framework for conducting and reporting OA phenotype research.METHODS: A panel of 25 members with expertise in OA phenotype research was composed. First, panel members participated in an online Delphi exercise to provide a number of basic definitions and statements relating to OA phenotypes and OA phenotype research. Second, panel members provided input on a set of recommendations for reporting on OA phenotype studies.RESULTS: Four Delphi rounds were required to achieve sufficient agreement on 11 definitions and statements. OA phenotypes were defined as subtypes of OA that share distinct underlying pathobiological and pain mechanisms and their structural and functional consequences. Reporting recommendations pertaining to the study characteristics, study population, data collection, statistical analysis, and appraisal of OA phenotype studies were provided.CONCLUSIONS: This study provides a number of consensus-based definitions and recommendations relating to OA phenotypes. The resulting framework is intended to facilitate research on OA phenotypes and increase combined efforts to develop effective OA phenotype classification. Success in this endeavor will hopefully translate into more effective, differentiated OA management that will benefit a multitude of OA patients.
MULTIFILE
Analyzing historical decision-related data can help support actual operational decision-making processes. Decision mining can be employed for such analysis. This paper proposes the Decision Discovery Framework (DDF) designed to develop, adapt, or select a decision discovery algorithm by outlining specific guidelines for input data usage, classifier handling, and decision model representation. This framework incorporates the use of Decision Model and Notation (DMN) for enhanced comprehensibility and normalization to simplify decision tables. The framework’s efficacy was tested by adapting the C4.5 algorithm to the DM45 algorithm. The proposed adaptations include (1) the utilization of a decision log, (2) ensure an unpruned decision tree, (3) the generation DMN, and (4) normalize decision table. Future research can focus on supporting on practitioners in modeling decisions, ensuring their decision-making is compliant, and suggesting improvements to the modeled decisions. Another future research direction is to explore the ability to process unstructured data as input for the discovery of decisions.
MULTIFILE