The effects of stress may be alleviated when its impact or a decreased stress-resilience are detected early. This study explores whether wearable-measured sleep and resting HRV in police officers can be predicted by stress-related Ecological Momentary Assessment (EMA) measures in preceding days and predict stress-related EMA outcomes in subsequent days. Eight police officers used an Oura ring to collect daily Total Sleep Time (TST) and resting Heart Rate Variability (HRV) and an EMA app for measuring demands, stress, mental exhaustion, and vigor during 15–55 weeks. Vector Autoregression (VAR) models were created and complemented by Granger causation tests and Impulse Response Function visualizations. Demands negatively predicted TST and HRV in one participant. TST negatively predicted demands, stress, and mental exhaustion in two, three, and five participants, respectively, and positively predicted vigor in five participants. HRV negatively predicted demands in two participants, and stress and mental exhaustion in one participant. Changes in HRV lasted longer than those in TST. Bidirectional associations of TST and resting HRV with stress-related outcomes were observed at a weak-to-moderate strength, but not consistently across participants. TST and resting HRV are more consistent predictors of stress-resilience in upcoming days than indicators of stress-related measures in prior days.
Occupational stress can cause health problems, productivity loss or absenteeism. Resilience interventions that help employees positively adapt to adversity can help prevent the negative consequences of occupational stress. Due to advances in sensor technology and smartphone applications, relatively unobtrusive self-monitoring of resilience-related outcomes is possible. With models that can recognize intra-individual changes in these outcomes and relate them to causal factors within the employee's context, an automated resilience intervention that gives personalized, just-in-time feedback can be developed. This paper presents the conceptual framework and methods behind the WearMe project, which aims to develop such models. A cyclical conceptual framework based on existing theories of stress and resilience is presented as the basis for the WearMe project. The operationalization of the concepts and the daily measurement cycle are described, including the use of wearable sensor technology (e.g., sleep tracking and heart rate variability measurements) and Ecological Momentary Assessment (mobile app). Analyses target the development of within-subject (n=1) and between-subjects models and include repeated measures correlation, multilevel modelling, time series analysis and Bayesian network statistics. Future work will focus on further developing these models and eventually explore the effectiveness of the envisioned personalized resilience system.
Memory forms the input for future behavior. Therefore, how individuals remember a certain experience may be just as important as the experience itself. The peak-and-end-rule (PE-rule) postulates that remembered experiences are best predicted by the peak emotional valence and the emotional valence at the end of an experience in the here and now. The PE-rule, however, has mostly been assessed in experimental paradigms that induce relatively simple, one-dimensional experiences (e.g. experienced pain in a clinical setting). This hampers generalizations of the PE-rule to the experiences in everyday life. This paper evaluates the generalizability of the PE-rule to more complex and heterogeneous experiences by examining the PE-rule in a virtual reality (VR) experience, as VR combines improved ecological validity with rigorous experimental control. Findings indicate that for more complex and heterogeneous experiences, peak and end emotional valence are inferior to other measures (such as averaged valence and arousal ratings over the entire experiential episode) in predicting remembered experience. These findings suggest that the PE-rule cannot be generalized to ecologically more valid experiential episodes.