A digital game-based simulation platform for integrated marine spatial planning: design challenges and technical innovations.
LINK
product
Learning across borders: Establishing transboundary coordination in Maritime Spatial Planning in the North Sea Region – Lessons from the NorthSEE project.
MULTIFILE
product
Food-web modeling in the Maritime Spatial Planning Challenge Simulation Platform: Results from the Baltic Sea Region
Gaming across boundaries: The MSP challenge as boundary object for learning in maritime spatial planning communities.
Maritime Spatial Planning (MSP) is a politically guided and stakeholder-driven process involving a range of actors (i.e., planners, stakeholders, scientists, and citizens). Theories of boundary objects offer a lens to understand how actors, in the context of decision and policy-making in organizations, can coordinate without consensus. This seems particularly relevant when institutions and communities are relatively young, and the body of knowledge is fragmented and fluid, such as in the case of MSP. A key question is whether, and how boundary objects can be intentionally designed and used to facilitate social and policy learning in such communities. In this research, the focus is on the use of the MSP Challenge serious games as a boundary object to facilitate learning in ‘Communities of Practice’ (CoP) around MSP. Data were collected through questionnaires of 62 MSP Challenge workshops between 2016 and 2020 with more than 1100 participants. Additionally, 33 interviews with key stakeholders were conducted. The findings show that the MSP Challenge is widely used for various goals and in various settings and that they are interpreted differently by different users. The success of the MSP Challenge relies on the boundary space in which it is implemented, taking into account discrepancies in learning due to variations in the backgrounds and attitudes of the participants towards the object, the activity, and the setting in which it is deployed.
MULTIFILE
product
Communicating Maritime Spatial Planning: The MSP Challenge approach
The MSP Challenge uses game technology and role-play to support communication and learning for Marine/Maritime Spatial Planning. Since 2011, a role-playing game, a board game and a digital interactive simulation platform have been developed. The MSP Challenge editions have been used in workshops, conferences, education, as well as for real life stakeholder engagement. The authors give an overview of the development of the MSP Challenge and reflect on the value of the approach as an engaging and ‘fun’ tool for building mutual understanding and communicating MSP.
PDF
product
An Integrated Food Web Model for the Baltic Sea : Design Challenges and Model Behaviour in an Interactive Simulation Platform
Brief demonstration of how the Ecopath-with-Ecosim ecosystem models for the North Sea and Baltic Sea regions function within the MSP Challenge simulation platform
PDF
product
Combining ecosystem modeling with serious gaming in support of transboundary maritime spatial planning
The Maritime Spatial Planning (MSP) Challenge simulation platform helps planners and stakeholders understand and manage the complexity of MSP. In the interactive simulation, different data layers covering an entire sea region can be viewed to make an assessment of the current status. Users can create scenarios for future uses of the marine space over a period of several decades. Changes in energy infrastructure, shipping, and the marine environment are then simulated, and the effects are visualized using indicators and heat maps. The platform is built with advanced game technology and uses aspects of role-play to create interactive sessions; it can thus be referred to as serious gaming. To calculate and visualize the effects of planning decisions on the marine ecology, we integrated the Ecopath with Ecosim (EwE) food web modeling approach into the platform. We demonstrate how EwE was connected to MSP, considering the range of constraints imposed by running scientific software in interactive serious gaming sessions while still providing cascading ecological feedback in response to planning actions. We explored the connection by adapting two published ecological models for use in MSP sessions. We conclude with lessons learned and identify future developments of the simulation platform.