Nature-based tourism in the desert can play an important role in reconnecting people with nature. Tourist experiences are influenced by imaginaries as well as the spiritual and aesthetic values of the landscape, promoting a new identity through a sense of transformation and belonging. These Cultural Ecosystem Services (CES) shaped as well by geopolitical imaginaries have as yet remained unexplored. They are important, new contributions to the body of research. How do German-speaking group and cruise tourists imagine the desert and how do they experience the cultural values of the dry ecosystem ‘in situ’? Primarily, in-depth interviews and travel ethnography were applied along with photography and content analysis of marketing material. To support these methods, a survey was distributed to mega-cruise tourists visiting the desert. Results show that group tourists in particular romanticize an imaginary, quiet, empty place similar to a sacred space, promoting self-transformation, a deep connection with the space and sociality with nature and/or with others. Their experiences also enhance empathy for the natural environment through ‘self-immersion’, creating profound well-being. While in the desert, group tourists engage in a multi-sensuous immersion and spiritual transformation, while cruise tourists enjoy an adventure experience. 74% of the cruise tourists enjoyed being in a completely different environment. But, due to noise, overcrowding and built infrastructure, some CES such as silence, finding solitude and viewing of the sands are diminished. A proposed framework takes into account the influence of geopolitical imaginaries and the spiritual and aesthetic values of the desert leading to the core spiritual experience. Such a framework can justify the long-term protection of the desert, and its high cultural value, as well as an environmental ethic.
DOCUMENT
Through the commodification of nature, the framing of the environment as a ‘natural resource’ or ‘ecosystem service’ has become increasingly prominent in international environmental governance. The economic capture approach is promoted by international organizations such as the United Nations Environmental Program (UNEP) through Reducing Emissions from Deforestation and Forest Degradation (REDD), Payments for Ecosystem Services (PES) and The Economics of Ecosystems and Biodiversity (TEEB). This paper will inquire as to how forest protection is related to issues of social and ecological justice, exploring whether forest exploitation based on the top-down managerial model fosters an unequitable distribution of resources. Both top-down and community-based approaches to forest protection will be critically examined and a more inclusive ethical framework to forest protection will be offered. The findings of this examination indicate the need for a renewed focus on existing examples of good practice in addressing both social and ecological need, as well as the necessity to address the less comfortable problem of where compromise appears less possible. The conclusion argues for the need to consider ecological justice as an important aspect of more socially orientated environmental justice for forest protection. https://doi.org/10.1017/S0376892916000436 https://www.linkedin.com/in/helenkopnina/
MULTIFILE
Currently, there is no method available that can systematically score the available ecosystem services in streets or street segments in suburban districts. In this study, different climate adaptation measures and their ecosystem services were categorized into green, blue, and grey categories and weight was given to each category based on their impact on the microclimate. This study took place in the Hillesluis district in the city of Rotterdam and the Paddepoel district in the city of Groningen. In Rotterdam, 21 streets, composed of 42 street segments, were assessed. In Groningen, 17 streets, composed of 45 street segments, were assessed. The available ecosystem services of each street segment were scored from 0–100. The scorecard method that was developed and tested during this study provided insight in the variation of available ecosystem services of streets and street segments. Individual street scores were very low in the city of Rotterdam and ranged between 3 and 50, with the average score for the street segments of 29. In Groningen, the scores were considerably higher with a range between 23 and 70, with an average score of 47 per street segment. The presence of larger green trees, front yards, and façade gardens in the green category are the most distinctive variable, while adaptation measures in the blue category were absent in both cities. The scorecard proved to be very useful in the adaptation labeling of street segments and entire streets. After assessing a neighborhood, the least adaptive streets can be identified relatively easy. Based on the score a label can be given between A+++ and G. The scorecard informs residents and decision makers about which streets are most adaptive and which streets have an adaptation potential. The method can easily be duplicated and used by local governments and community groups to have better insight in the level of climate adaptation of their street. Labels for entire streets can be used to create awareness and encourage residents to take action and expand the number of climate adaptation measures in their street.
DOCUMENT
The seaweed aquaculture sector, aimed at cultivation of macroalgal biomass to be converted into commercial applications, can be placed within a sustainable and circular economy framework. This bio-based sector has the potential to aid the European Union meet multiple EU Bioeconomy Strategy, EU Green Deal and Blue Growth Strategy objectives. Seaweeds play a crucial ecological role within the marine environment and provide several ecosystem services, from the take up of excess nutrients from surrounding seawater to oxygen production and potentially carbon sequestration. Sea lettuce, Ulva spp., is a green seaweed, growing wild in the Atlantic Ocean and North Sea. Sea lettuce has a high nutritional value and is a promising source for food, animal feed, cosmetics and more. Sea lettuce, when produced in controlled conditions like aquaculture, can supplement our diet with healthy and safe proteins, fibres and vitamins. However, at this moment, Sea lettuce is hardly exploited as resource because of its unfamiliarity but also lack of knowledge about its growth cycle, its interaction with microbiota and eventually, possible applications. Even, it is unknown which Ulva species are available for aquaculture (algaculture) and how these species can contribute to a sustainable aquaculture biomass production. The AQULVA project aims to investigate which Ulva species are available in the North Sea and Wadden Sea which can be utilised in onshore aquaculture production. Modern genomic, microbiomic and metabolomic profiling techniques alongside ecophysiological production research must reveal suitable Ulva selections with high nutritional value for sustainable onshore biomass production. Selected Ulva spp lines will be used for production of healthy and safe foods, anti-aging cosmetics and added value animal feed supplements for dairy farming. This applied research is in cooperation with a network of SME’s, Research Institutes and Universities of Applied Science and is liaised with EU initiatives like the EU-COST action “SeaWheat”.
“Empowering learners to create a sustainable future” This is the mission of Centre of Expertise Mission-Zero at The Hague University of Applied Sciences (THUAS). The postdoc candidate will expand the existing knowledge on biomimicry, which she teaches and researches, as a strategy to fulfil the mission of Mission-Zero. We know when tackling a design challenge, teams have difficulties sifting through the mass of information they encounter. The candidate aims to recognize the value of systematic biomimicry, leading the way towards the ecosystems services we need tomorrow (Pedersen Zari, 2017). Globally, biomimicry demonstrates strategies contributing to solving global challenges such as Urban Heat Islands (UHI) and human interferences, rethinking how climate and circular challenges are approached. Examples like Eastgate building (Pearce, 2016) have demonstrated successes in the field. While biomimicry offers guidelines and methodology, there is insufficient research on complex problem solving that systems-thinking requires. Our research question: Which factors are needed to help (novice) professionals initiate systems-thinking methods as part of their strategy? A solution should enable them to approach challenges in a systems-thinking manner just like nature does, to regenerate and resume projects. Our focus lies with challenges in two industries with many unsustainable practices and where a sizeable impact is possible: the built environment (Circularity Gap, 2021) and fashion (Joung, 2014). Mission Zero has identified a high demand for Biomimicry in these industries. This critical approach: 1) studies existing biomimetic tools, testing and defining gaps; 2) identifies needs of educators and professionals during and after an inter-disciplinary minor at The Hague University; and, 3) translates findings into shareable best practices through publications of results. Findings will be implemented into tangible engaging tools for educational and professional settings. Knowledge will be inclusive and disseminated to large audiences by focusing on communication through social media and intervention conferences.
The research, supported by our partners, sets out to understand the drivers and barriers to sustainable logistics in port operations using a case study of drone package delivery at Rotterdam Port. Beyond the technical challenges of drone technology as an upcoming technology, it needs to be clarified how drones can operate within a port ecosystem and how they could contribute to sustainable logistics. KRVE (boatmen association), supported by other stakeholders of Rotterdam port, approached our school to conduct exploratory research. Rotterdam Port is the busiest port in Europe in terms of container volume. Thirty thousand vessels enter the port yearly, all needing various services, including deliveries. Around 120 packages/day are delivered to ships/offices onshore using small boats, cars, or trucks. Deliveries can take hours, although the distance to the receiver is close via the air. Around 80% of the packages are up to 20kg, with a maximum of 50kg. Typical content includes documents, spare parts, and samples for chemical analysis. Delivery of packages using drones has advantages compared with traditional transport methods: 1. It can save time, which is critical to port operators and ship owners trying to reduce mooring costs. 2. It can increase logistic efficiency by streamlining operations. 3. It can reduce carbon emissions by limiting the use of diesel engines, boats, cars, and trucks. 4. It can reduce potential accidents involving people in dangerous environments. The research will highlight whether drones can create value (economic, environmental, social) for logistics in port operations. The research output links to key national logistic agenda topics such as a circular economy with the development of innovative logistic ecosystems, energy transition with the reduction of carbon emissions, societal earning potential where new technology can stimulate the economy, digitalization, key enabling technology for lean operations, and opportunities for innovative business models.