We investigate circular entrepreneurial ecosystems that support circular startups and innovation. We argue that circular entrepreneurial ecosystems are constellations of existing entrepreneurial ecosystems that extend across geographies and sectors, requiring ecosystem intermediaries to bridge institutional environments and provide access to actors and resources. Focusing on the emerging circular transition in the textiles and apparel industry, we gathered data from in-depth interviews, field observations, and archival documentation over a seven--year period. Our findings show that circular entrepreneurial ecosystems are purposefully intermediated at a meta level, generating nested and distributed ecosystems. To elucidate circular ecosystem intermediation, we devised a model of system level 5 intermediation that extends the conceptualization of ecologies of system intermediation across geographic and sector boundaries. Our study contributes to the literatures on circular entrepreneurship, circular ecosystems, and ecosystem intermediation as well as provides practical implications for practitioners and policy makers.
Both research and practice acknowledge that an increasing number of business models are realized by multiple organizations in innovation ecosystems. Little research addresses how organizations develop these business models jointly over time and balance the tensions that occur from the divergent goals and interests of each actor. We propose that the concept of value valuation may be helpful in understanding this process. Value valuation is a balancing process that takes place between actors in an innovation ecosystem when collaborating around a business model for sustainability, making sure that the benefits of ecosystem membership outweighs its costs, leading to continuing support of the initiative. Based on four smart city projects for a circular economy we find that value is valuated along two dimensions: economic, environmental and social value; and mutual and individual value. Value valuation takes place in iterative cycles and is characterized by a number of mechanisms, including action-based experimenting. These findings open up a research agenda to study the dynamics of ecosystem-based business model development.
The European creative visual industry is undergoing rapid technological development, demanding solid initiatives to maintain a competitive position in the marketplace. AVENUE, a pan-European network of Centres of Vocational Excellence, addresses this need through a collaboration of five independent significant ecosystems, each with a smart specialisation. AVENUE will conduct qualified industry-relevant research to assess, analyse, and conclude on the immediate need for professional training and educational development. The primary objective of AVENUE is to present opportunities for immediate professional and vocational training, while innovating teaching and learning methods in formal education, to empower students and professionals in content creation, entrepreneurship, and innovation, while supporting sustainability and healthy working environments. AVENUE will result in a systematised upgrade of workforce to address the demand for new skills arising from rapid technological development. Additionally, it will transform the formal education within the five participating VETs, making them able to transition from traditional artistic education to delivering skills, mindsets and technological competencies demanded by a commercial market. AVENUE facilitates mobility, networking and introduces a wide range of training formats that enable effective training within and across the five ecosystems. A significant portion of the online training is Open Access, allowing professionals from across Europe to upgrade their skills in various processes and disciplines. The result of AVENUE will be a deep-rooted partnership between five strong ecosystems, collaborating to elevate the European industry. More than 2000 professionals, employees, students, and young talents will benefit from relevant and immediate upgrading of competencies and skills, ensuring that the five European ecosystems remain at the forefront of innovation and competitiveness in the creative visual industry.
“Empowering learners to create a sustainable future” This is the mission of Centre of Expertise Mission-Zero at The Hague University of Applied Sciences (THUAS). The postdoc candidate will expand the existing knowledge on biomimicry, which she teaches and researches, as a strategy to fulfil the mission of Mission-Zero. We know when tackling a design challenge, teams have difficulties sifting through the mass of information they encounter. The candidate aims to recognize the value of systematic biomimicry, leading the way towards the ecosystems services we need tomorrow (Pedersen Zari, 2017). Globally, biomimicry demonstrates strategies contributing to solving global challenges such as Urban Heat Islands (UHI) and human interferences, rethinking how climate and circular challenges are approached. Examples like Eastgate building (Pearce, 2016) have demonstrated successes in the field. While biomimicry offers guidelines and methodology, there is insufficient research on complex problem solving that systems-thinking requires. Our research question: Which factors are needed to help (novice) professionals initiate systems-thinking methods as part of their strategy? A solution should enable them to approach challenges in a systems-thinking manner just like nature does, to regenerate and resume projects. Our focus lies with challenges in two industries with many unsustainable practices and where a sizeable impact is possible: the built environment (Circularity Gap, 2021) and fashion (Joung, 2014). Mission Zero has identified a high demand for Biomimicry in these industries. This critical approach: 1) studies existing biomimetic tools, testing and defining gaps; 2) identifies needs of educators and professionals during and after an inter-disciplinary minor at The Hague University; and, 3) translates findings into shareable best practices through publications of results. Findings will be implemented into tangible engaging tools for educational and professional settings. Knowledge will be inclusive and disseminated to large audiences by focusing on communication through social media and intervention conferences.
Many Caribbean reefs have shifted from coral-dominated to algal-dominated ecosystems. The high algae cover reduces coral recruitment, making the reef unable to recover from other disturbances and resulting in flatter reefs with lower biodiversity. One of the reasons for the proliferation of algae is a mass die-off of the herbivorous sea urchin Diadema antillarum in the early 1980s. Natural recovery of Diadema populations is slow to non-existent, making active restoration of this important grazer a top priority in Caribbean coral reef management, especially since Diadema densities were reduced by another mass mortality event in 2022. The marine park organizations of Saba and St. Eustatius want to restore Diadema populations by restocking cultured individuals. However, important knowledge gaps need to be addressed before large numbers of Diadema can be restocked on the reef. Current culture methods can only produce a limited number of competent larvae. In addition, only 8% of the settlers survive and after restocking, survival on the reef is low as well. In the RAAK PRO Diadema II project, the bottlenecks in Diadema culture will be addressed by comparing larval survival across multiple culture methods and investigating the relation between larval size and post-settlement survival. Growing-out juveniles at sea is likely to help prepare them for life in the wild, while restocking at an optimal size might also increase survival. Finally, a thorough restocking site selection based on high shelter availability and settlement rates will increase the long-term Diadema densities. The acquired knowledge and developed practices will be verified in a larger scale restocking experiment involving at least 5000 Diadema urchins. By restoring Diadema populations through restocking, macroalgae will be more intensively removed and corals will have a chance to settle and to survive, increasing the ability of the reef to cope with other stressors.