The methodology of biomimicry design thinking is based on and builds upon the overarching patterns that all life abides by. “Cultivating cooperative relationships” within an ecosystem is one such pattern we as humans can learn from to nurture our own mutualistic and symbiotic relationships. While form and process translations from biology to design have proven accessible by students learning biomimicry, the realm of translating biological functions in a systematic approach has proven to be more difficult. This study examines how higher education students can approach the gap that many companies in transition are struggling with today; that of thinking within the closed loops of their own ecosystem, to do good without damaging the system itself. Design students should be able to assess and advise on product design choices within such systems after graduation. We know when tackling a design challenge, teams have difficulties sifting through the mass of information they encounter, and many obstacles are encountered by students and their professional clients when trying to implement systems thinking into their design process. While biomimicry offers guidelines and methodology, there is insufficient research on complex, systems-level problem solving that systems thinking biomimicry requires. This study looks at factors found in course exercises, through student surveys and interviews that helped (novice) professionals initiate systems thinking methods as part of their strategy. The steps found in this research show characteristics from student responses and matching educational steps which enabled them to develop their own approach to challenges in a systems thinking manner. Experiences from the 2022 cohort of the semester “Design with Nature” within the Industrial Design Engineering program at The Hague University of Applied Sciences in the Netherlands have shown that the mixing and matching of connected biological design strategies to understand integrating functions and relationships within a human system is a promising first step. Stevens LL, Whitehead C, Singhal A. Cultivating Cooperative Relationships: Identifying Learning Gaps When Teaching Students Systems Thinking Biomimicry. Biomimetics. 2022; 7(4):184. https://doi.org/10.3390/biomimetics7040184
In order to study education and development, researchers can choose among a plethora of methods. The Merriam-Webster dictionary tells us that “method” means: a procedure or process for attaining an object …such as …a systematic procedure, technique, or mode of inquiry employed by or proper to a particular discipline or art “ or “a way, technique, or process of or for doing something”, or “a body of skills or techniques”. Methods proper to the scientific study of education and development cover a very broad range of procedures, ranging from how to formulate and ask questions, how to design studies for answering such questions, how to perform such studies in real-world contexts, how to extract data and how to process them, how to relate processed data to answers on questions, how to communicate such questions and answers, and how to apply them to real world activities aimed at promoting education and development. This body of methods is customarily termed “methodology”, which is a concept that includes the methods themselves but also our understanding of their relationships and their rational and scientific justification. Let us call this body of methods and the justifications “Integrative methodology”. Researchers often tend to see this integrative methodology as a more or less autonomous set of good practice prescriptions. This view is consistent with practices of academic training in which methodology courses are offered separate from courses on disciplinarian contents, e.g. courses on development or educational science. As a consequence of this autonomy oriented view of methodology, scientific questions regarding development and education tend to be framed in terms of the available or habitual methods. For instance, we readily transform or translate concrete questions about the influence of some particular educational intervention in terms of a statistically significant difference between 2 representative samples that systematically differ in only one variable or feature of interest, which, in this case, is the intervention. Almost every word in this translation carries the heavy burden of methodological principles, concepts and presuppositions: “statistically”, “significant”, “difference”, “representative”, “sample”, “systematically”, “variable”, and “intervention”. And all these principles, concepts and presuppositions are taken from this autonomous body of integrative methodology, which forms our indisputable cookbook of good practices, outside of which no good — scientific — practices exist. The answers to questions that are shaped by this independent body of methodology will then contribute to existing theories of development and education. In this sense, it is the (allegedly) independent methodology that informs theory.In this chapter, we will move against this current practice and make the — apparently deeply obvious — claim that it must be theory that informs the questions and the way we shall answer these questions. That is, it must be theory – that is, your body of justified knowledge about a particular phenomenon – that informs, influences and determines methodology, that is, the whole of methods, procedures and instruments that you use to study that phenomenon. . The sort of theory that should inform integrative methodology must be an integrative theory, that is to say a theory consisting of a consistent set of general principles and concepts shaping the domains of inquiry, which in this particular case are the related domains of development and education
To successfully develop a system, a solid understanding of its architecture by stakeholders involved in the development of the system is key. This process is supported by System Architects, who have a profession that is often regarded as experience based. However, we argue that it is important to familiarize students with the concept of System Architecting, so that they are at least receptive of the nuances involved and potentially can continue a pathway of development towards such a role. In this paper we explore the potential use of A3 Architecture Overviews (A3AO) as an educational tool to support familiarization with Systems Engineering and Systems Architecting. The A3AO has been developed as a supportive tool to communicate a system’s architecture. It uses diagrams to model and visualize a system with different views and is intended to be printed on a physical A3 paper. It serves as a reference for, and facilitator of design discussions. Skills envisioned to be developed while using an A3AO include strict selection and visualization of information, two critical competencies to handle systems’ complexity. The A3AOs have been applied in a course on Systems Engineering at an applied University in The Netherlands and were part of the assessed deliverables. The relative free-form nature of the A3AO posed students with various dilemmas in their use, but also provided the opportunity for guided development on the envisioned competencies. We conclude that more research is required to further formalize this guided development, but we also experience that the A3AO has the potential to support systems engineering and systems architecting practices in education.
A-das-PK; een APK-straat voor rijhulpsystemen Uit recent onderzoek en vragen vanuit de autobranche blijkt een duidelijke behoefte naar goed onderhoud, reparatie en borging van de werking van Advanced Driver Assistance Systems (ADAS), vergelijkbaar met de reguliere APK. Een APK voor ADAS bestaat nog niet, maar de branche wil hier wel op te anticiperen en haar clientèle veilig laten rijden met de rijhulpsystemen. In 2022 worden 30 ADAS’s verplicht en zal de werking van deze systemen ook gedurende de levensduur van de auto gegarandeerd moeten worden. Disfunctioneren van ADAS, zowel in false positives als false negatives kan leiden tot gevaarlijke situaties door onverwacht rijgedrag van het voertuig. Zo kan onverwacht remmen door detectie van een niet bestaand object of op basis van verkeersborden op parallelwegen een kettingbotsing veroorzaken. Om te kijken welke gevolgen een APK heeft voor de autobranche wil A-das-PK voor autobedrijven kijken naar de benodigde apparatuur, opleiding en hard- en software voor een goed werkende APK-straat voor ADAS’s, zodat de kansrijke elementen in een vervolgonderzoek uitgewerkt kunnen worden.
The pace of technology advancements continues to accelerate, and impacts the nature of systems solutions along with significant effects on involved stakeholders and society. Design and engineering practices with tools and perspectives, need therefore to evolve in accordance to the developments that complex, sociotechnical innovation challenges pose. There is a need for engineers and designers that can utilize fitting methods and tools to fulfill the role of a changemaker. Recognized successful practices include interdisciplinary methods that allow for effective and better contextualized participatory design approaches. However, preliminary research identified challenges in understanding what makes a specific method effective and successfully contextualized in practice, and what key competences are needed for involved designers and engineers to understand and adopt these interdisciplinary methods. In this proposal, case study research is proposed with practitioners to gain insight into what are the key enabling factors for effective interdisciplinary participatory design methods and tools in the specific context of sociotechnical innovation. The involved companies are operating at the intersection between design, technology and societal impact, employing experts who can be considered changemakers, since they are in the lead of creative processes that bring together diverse groups of stakeholders in the process of sociotechnical innovation. A methodology will be developed to capture best practices and understand what makes the deployed methods effective. This methodology and a set of design guidelines for effective interdisciplinary participatory design will be delivered. In turn this will serve as a starting point for a larger design science research project, in which an educational toolkit for effective participatory design for socio-technical innovation will be designed.
The European creative visual industry is undergoing rapid technological development, demanding solid initiatives to maintain a competitive position in the marketplace. AVENUE, a pan-European network of Centres of Vocational Excellence, addresses this need through a collaboration of five independent significant ecosystems, each with a smart specialisation. AVENUE will conduct qualified industry-relevant research to assess, analyse, and conclude on the immediate need for professional training and educational development. The primary objective of AVENUE is to present opportunities for immediate professional and vocational training, while innovating teaching and learning methods in formal education, to empower students and professionals in content creation, entrepreneurship, and innovation, while supporting sustainability and healthy working environments. AVENUE will result in a systematised upgrade of workforce to address the demand for new skills arising from rapid technological development. Additionally, it will transform the formal education within the five participating VETs, making them able to transition from traditional artistic education to delivering skills, mindsets and technological competencies demanded by a commercial market. AVENUE facilitates mobility, networking and introduces a wide range of training formats that enable effective training within and across the five ecosystems. A significant portion of the online training is Open Access, allowing professionals from across Europe to upgrade their skills in various processes and disciplines. The result of AVENUE will be a deep-rooted partnership between five strong ecosystems, collaborating to elevate the European industry. More than 2000 professionals, employees, students, and young talents will benefit from relevant and immediate upgrading of competencies and skills, ensuring that the five European ecosystems remain at the forefront of innovation and competitiveness in the creative visual industry.