The primary aims of this study were (1) to evaluate whole-body mechanical efficiency (ME) in a large group of chronic obstructive pulmonary disease (COPD) patients with a wide range of degrees of illness and (2) to examine how ME in COPD is related to absolute work rate and indices of disease severity during exercise testing. A total of 569 patients (301 male patients; GOLD stage I: 28, GOLD stage II: 166, GOLD stage III: 265, and GOLD stage IV: 110) with chronic obstructive pulmonary disease (COPD) were included in the data analysis. Individual maximal workload (watt), peak minute ventilation ((Equation is included in full-text article.)E, L/min body temperature and pressure, saturated), and peak oxygen uptake ((Equation is included in full-text article.)O2, mL/min standard temperature and pressure, dry) were determined from a maximal incremental cycle ergometer test. Ventilatory and metabolic response parameters were collected during a constant work rate test at 75% of the individual maximal workload. From the exercise responses of the constant work rate test, the gross ME was calculated. The mean whole-body gross ME was 11.0 ± 3.5% at 75% peak power. The ME declined significantly (P < .001) with increasing severity of the disease when measured at the same relative power. Log-transformed absolute work rate (r = .87, P < .001) was the strongest independent predictor of gross ME. Body mass was the single other variable that contributed significantly to the linear regression model. Gross ME in COPD was largely predicted by the absolute work rate (r = .87; P < .001) while indices of the severity of the disease did not predict ME in COPD.
Electrification of transportation, communication, working and living continues worldwide. Televisions, telephones, servers are an important part of everyday life. These loads and most sustainable sources as well, have one thing in common: Direct Current. The Dutch research and educational programme ‘DC – road to its full potential’ studies the impact of feeding these appliances from a DC grid. An improvement in energy efficiency is expected, other benefits are unknown and practical considerations are needed to come to a proper comparison with an AC grid. This paper starts with a brief introduction of the programme and its first stages. These stages encompass firstly the commissioning, selection and implementation of a safe and user friendly testing facility, to compare performance of domestic appliances when powered with AC and DC. Secondly, the relationship between the DC-testing facility and existing modeling and simulation assignments is explained. Thirdly, first results are discussed in a broad sense. An improved energy efficiency of 3% to 5% is already demonstrated for domestic appliances. That opens up questions for the performance of a domestic DC system as a whole. The paper then ends with proposed minor changes in the programme and guidelines for future projects. These changes encompass further studying of domestic appliances for product-development purposes, leaving less means for new and costly high-power testing facilities. Possible gains are 1) material and component savings 2) simpler and cheaper exteriors 3) stable and safe in-house infrastructure 4) whilst combined with local sustainable generation. That is the road ahead. 10.1109/DUE.2014.6827758
In order for techniques from Model Driven Engineering to be accepted at large by the game industry, it is critical that the effectiveness and efficiency of these techniques are proven for game development. There is no lack of game design models, but there is no model that has surfaced as an industry standard. Game designers are often reluctant to work with models: they argue these models do not help them design games and actually restrict their creativity. At the same time, the flexibility that model driven engineering allows seems a good fit for the fluidity of the game design process, while clearly defined, generic models can be used to develop automated design tools that increase the development’s efficiency.
Designing cities that are socially sustainable has been a significant challenge until today. Lately, European Commission’s research agenda of Industy 5.0 has prioritised a sustainable, human-centric and resilient development over merely pursuing efficiency and productivity in societal transitions. The focus has been on searching for sustainable solutions to societal challenges, engaging part of the design industry. In architecture and urban design, whose common goal is to create a condition for human life, much effort was put into elevating the engineering process of physical space, making it more efficient. However, the natural process of social evolution has not been given priority in urban and architectural research on sustainable design. STEPS stems from the common interest of the project partners in accessible, diverse, and progressive public spaces, which is vital to socially sustainable urban development. The primary challenge lies in how to synthesise the standardised sustainable design techniques with unique social values of public space, propelling a transition from technical sustainability to social sustainability. Although a large number of social-oriented studies in urban design have been published in the academic domain, principles and guidelines that can be applied to practice are large missing. How can we generate operative principles guiding public space analysis and design to explore and achieve the social condition of sustainability, developing transferable ways of utilising research knowledge in design? STEPS will develop a design catalogue with operative principles guiding public space analysis and design. This will help designers apply cross-domain knowledge of social sustainability in practice.
Developing a framework that integrates Advanced Language Models into the qualitative research process.Qualitative research, vital for understanding complex phenomena, is often limited by labour-intensive data collection, transcription, and analysis processes. This hinders scalability, accessibility, and efficiency in both academic and industry contexts. As a result, insights are often delayed or incomplete, impacting decision-making, policy development, and innovation. The lack of tools to enhance accuracy and reduce human error exacerbates these challenges, particularly for projects requiring large datasets or quick iterations. Addressing these inefficiencies through AI-driven solutions like AIDA can empower researchers, enhance outcomes, and make qualitative research more inclusive, impactful, and efficient.The AIDA project enhances qualitative research by integrating AI technologies to streamline transcription, coding, and analysis processes. This innovation enables researchers to analyse larger datasets with greater efficiency and accuracy, providing faster and more comprehensive insights. By reducing manual effort and human error, AIDA empowers organisations to make informed decisions and implement evidence-based policies more effectively. Its scalability supports diverse societal and industry applications, from healthcare to market research, fostering innovation and addressing complex challenges. Ultimately, AIDA contributes to improving research quality, accessibility, and societal relevance, driving advancements across multiple sectors.
Due to the existing pressure for a more rational use of the water, many public managers and industries have to re-think/adapt their processes towards a more circular approach. Such pressure is even more critical in the Rio Doce region, Minas Gerais, due to the large environmental accident occurred in 2015. Cenibra (pulp mill) is an example of such industries due to the fact that it is situated in the river basin and that it has a water demanding process. The current proposal is meant as an academic and engineering study to propose possible solutions to decrease the total water consumption of the mill and, thus, decrease the total stress on the Rio Doce basin. The work will be divided in three working packages, namely: (i) evaluation (modelling) of the mill process and water balance (ii) application and operation of a pilot scale wastewater treatment plant (iii) analysis of the impacts caused by the improvement of the process. The second work package will also be conducted (in parallel) with a lab scale setup in The Netherlands to allow fast adjustments and broaden evaluation of the setup/process performance. The actions will focus on reducing the mill total water consumption in 20%.