CC-BY Dit artikel is overgenomen van https://www.frontiersin.org/journals/neurorobotics There is a growing international interest in developing soft wearable robotic devices to improve mobility and daily life autonomy as well as for rehabilitation purposes. Usability, comfort and acceptance of such devices will affect their uptakes in mainstream daily life. The XoSoft EU project developed a modular soft lower-limb exoskeleton to assist people with low mobility impairments. This paper presents the bio-inspired design of a soft, modular exoskeleton for lower limb assistance based on pneumatic quasi-passive actuation. The design of a modular reconfigurable prototype and its performance are presented. This actuation centers on an active mechanical element to modulate the assistance generated by a traditional passive component, in this case an elastic belt. This study assesses the feasibility of this type of assistive device by evaluating the energetic outcomes on a healthy subject during a walking task. Human-exoskeleton interaction in relation to task-based biological power assistance and kinematics variations of the gait are evaluated. The resultant assistance, in terms of overall power ratio (Λ) between the exoskeleton and the assisted joint, was 26.6% for hip actuation, 9.3% for the knee and 12.6% for the ankle. The released maximum power supplied on each articulation, was 113.6% for the hip, 93.2% for the knee, and 150.8% for the ankle.
MULTIFILE
Standard treatment for large burns is transplantation with meshed split skin autografts (SSGs). A disadvantage of this treatment is that healing is accompanied by scar formation. Application of autologous epidermal cells (keratinocytes and melanocytes) may be a suitable therapeutic alternative, since this may enhance wound closure and improve scar quality. A prospective, multicenter randomized clinical trial was performed in 40 adult patients with acute full thickness burns. On two comparable wound areas, conventional treatment with SSGs was compared to an experimental treatment consisting of SSGs in combination with cultured autologous epidermal cells (ECs) seeded in a collagen carrier. The primary outcome measure was wound closure after 5-7 days. Secondary outcomes were safety aspects and scar quality measured by graft take, scar score (POSAS), skin colorimeter (DermaSpectrometer) and elasticity (Cutometer). Wound epithelialization after 5-7 days was significantly better for the experimental treatment (71%) compared to the standard treatment (67%) (p = 0.034, Wilcoxon), whereas the take rates of the grafts were similar. No related adverse events were recorded. Scar quality was evaluated at 3 (n = 33) and 12 (n = 28) months. The POSAS of the observer after 3 and 12 months and of the patient after 12 months were significantly better for the experimental area. Improvements between 12% and 23% (p ≤ 0.010, Wilcoxon) were detected for redness, pigmentation, thickness, relief, and pliability. Melanin index at 3 and 12 months and erythema index at 12 months were closer to normal skin for the experimental treatment than for conventional treatment (p ≤ 0.025 paired samples t-test). Skin elasticity showed significantly higher elasticity (p = 0.030) in the experimental area at 3 months follow-up. We showed a safe application and significant improvements of wound healing and scar quality in burn patients after treatment with ECs versus SSGs only. The relevance of cultured autologous cells in treatment of extensive burns is supported by our current findings.