Several studies have shown that flying electric between the so-called ABC-islands in the Caribbean (i.e., Aruba, Bonaire and Curaçao) is feasible with the upcoming first generation of battery-electric aircraft. This paper presents a real-world case study that deals with the technical and operational characteristics of electric flight in that region. With that purpose, the Aruba Airport Authority (AAA) commissioned this investigation, which involved numerous local stakeholders, such as airlines, energy providers and navigation services. This study involves two commuter electric aircraft under development, aiming to investigate how they fit in the current operational scheme of three local airlines and three conventional aircraft types in terms of technology, capacity, schedule, performance, CO2 emissions and fuel costs. Conclusions indicate that a transition to batter-electric aircraft is feasible with regards to the aforementioned criteria and with the current technology and energy density of batteries.
DOCUMENT
This study focuses on the feasibility of electric aircraft operations between the Caribbean islands of Aruba, Bonaire, and Curaçao. It explores the technical characteristics of two different future electric aircraft types (i.e., Alice and ES-19) and compares their operational requirements with those of three conventional types currently in operation in the region. Flight operations are investigated from the standpoint of battery performance, capacity, and consumption, while their operational viability is verified. In addition, the CO2 emissions of electric operations are calculated based on the present energy mix, revealing moderate improvements. The payload and capacity are also studied, revealing a feasible transition to the new types. The impact of the local climate is discussed for several critical components, while the required legislation for safe operations is explored. Moreover, the maintenance requirements and costs of electric aircraft are explored per component, while charging infrastructure in the hub airport of Aruba is proposed and discussed. Overall, this study offers a thorough overview of the opportunities and challenges that electric aircraft operations can offer within the context of this specific islandic topology.
MULTIFILE
The promotor was Prof. Erik Jan Hultink and copromotors Dr Ellis van den Hende en Dr R. van der Lugt. The title of this dissertation is Armchair travelling the innovation journey. ‘Armchair travelling’ is an expression for travelling to another place, in the comfort of one’s own place. ‘The innovation journey’ is the metaphor Van de Ven and colleagues (1999) have used for travelling the uncharted river of innovation, the highly unpredictable and uncontrollable process of innovation. This research study began with a brief remark from an innovation project leader who sighed after a long and rough journey: ‘had I known this ahead of time…’. From wondering ‘what could he have known ahead of time?’ the immediate question arose: how do such innovation journeys develop? How do other innovation project leaders lead the innovation journey? And could I find examples of studies about these experiences from an innovation project leader’s perspective that could have helped the sighing innovation project leader to have known at least some of the challenges ahead of time? This dissertation is the result of that quest, as we do know relatively little how this process of the innovation project leader unfolds over time. The aim of this study is to increase our understanding of how innovation project leaders lead their innovation journeys over time, and to capture those experiences that could be a source for others to learn from and to be better prepared. This research project takes a process approach. Such an approach is different from a variance study. Process thinking takes into account how and why things – people, organizations, strategies, environments – change, act and evolve over time, expressed by Andrew Pettigrew (1992, p.10) as catching “reality in flight”.
MULTIFILE