In this study we developed models in order to predict the need for public charging points. These models give municipalities an insight into various environmental and consumer related factors that determine the need for public charging points for electric vehicles in the neighbourhood. These factors include, amongst others, the average gross monthly income of households in a certain neighbourhood and the overall number of cars in a certain neighbourhood. On the basis of the models it turns out, among other factors, that neighbourhoods with households with a relatively high average gross monthly income, and a relatively high number of cars, need a relatively large number of public charging points for electric vehicles.
This paper explores current and potential future use of fast charging stations for electric passenger vehicles. The aim of the paper is to analyse current charging patterns at fast charging stations and the role of fast charging among different charging options. These patterns are explored along the lines of the technical capabilities of the vehicles and it is found that with increasing battery capacity the need for fast charging decreases. However, for those vehicles with large charging capacities there are indications that fast charging is perceived as more convenient as these are used more often. Such results indicate a larger share for fast charging if charging capacities increase in the future. Results from a spatial analysis show that most fast charging is done at a considerable distance from home, suggesting mostly ‘on the road’ charging sessions. Some fast charging sessions are relatively close to home, especially for those without private home charging access. This shows some future potential for fast charging in cities with many on-street parking facilities.
With the rise of the number of electric vehicles, the installment of public charging infrastructure is becoming more prominent. In urban areas in which EV users rely on on-street parking facilities, the demand for public charging stations is high. Cities take on the role of implementing public charging infrastructure and are looking for efficient roll-out strategies. Municipalities generally reserve the parking spots next to charging stations to ensure their availability. Underutilization of these charging stations leads to increased parking pressure, especially during peak hours. The city of The Hague has therefore implemented daytime reservation of parking spots next to charging stations. These parking spots are exclusively available between 10:00 and 19:00 for electric vehicles and are accessible for other vehicles beyond these times. This paper uses a large dataset with information on nearly 40.000 charging sessions to analyze the implementation of the abovementioned scheme. An unique natural experiment was created in which charging stations within areas of similar parking pressure did or did not have this scheme implemented. Results show that implemented daytime charging 10-19 can restrict EV owners in using the charging station at times when they need it. An extension of daytime charging to 10:00-22:00 proves to reduce the hurdle for EV drivers as only 3% of charging sessions take place beyond this time. The policy still has the potential to relieve parking pressure. The paper contributes to the knowledge of innovative measures to stimulate the optimized rollout and usage of charging infrastructure.
As electric loads in residential areas increase as a result of developments in the areas of electric vehicles, heat pumps and solar panels, among others, it is becoming increasingly likely that problems will develop in the electricity distribution grid. This research will analyse different solutions to such problems to determine Using a model developed as part of this project, we will simulate various cases to determine under which circumstances load balancing at a community-level is more (cost) effective than alternative solutions (e.g. grid reinforcement and/or household batteries).
Economic and environmental sustainability are the two main drivers behind today’s logistics innovation. On the one hand, Industry 4.0 technologies are leading towards self-organizing logistics by enabling autonomous vehicles, which can significantly make logistics transport efficient. Detailed impact analysis of autonomous vehicles in repetitive, short-distance inter-hub transport in logistics hubs like XL Business park is presently being investigated in KIEM project STEERS. On the other hand, the zero-emission technology (such as battery electric) can complement the autonomous logistics transport in making such a logistics hub climate-neutral. In such a scenario, an automatic vehicle charging environment (i.e., charging infrastructure and energy supply) for autonomous electric vehicles will play a crucial role in maximizing the overall operational efficiency and sustainability by reducing the average idle time of both vehicles and charging infrastructure. The project INGENIOUS explores an innovative idea for presenting a sustainable and environment-friendly solution for meeting the energy demand and supply for autonomous electric vehicles in a logistics hub. It will develop and propose an intelligent charging environment for operating autonomous electric vehicles in XL Business park by considering its real-life settings and operational demand. The project combines the knowledge of education and research institutes (Hogeschool van Arnhem en Nijmegen and The University of Twente), industry partners (HyET Solar Netherlands BV, Distribute, Bolk Container Transport and Combi Terminal Twente), and public institutes (XL Business Park, Port of Twente, Regio Twente and Industriepark Kleefse Waard). The project results will form a sound basis for developing a real-life demonstrator in the XL Business park in the subsequent RAAK Pro SAVED project. A detailed case study for Industriepark Kleefse Waard will also be carried out to showcase the broader applicability of the INGENIOUS concept.
Welke kennis over ‘het delen van LEV’s’ is nodig voor een waardevolle bijdrage aan de ontwikkeling van dit kennisdomein ten behoeve van de markt? Dit plan beschrijft de wijze waarop een kennisagenda rondom het delen van Light Electric Vehicles, ofwel LEV’s, wordt opgesteld. Uiteindelijk doel is een aanzet te maken voor het opzetten van een kenniscentrum voor het delen van LEV’s. Elektrische brommobielen, elektrische stepjes en voertuigjes voor elektrische stadsdistributie. Alle vallen ze onder de noemer Light Electric Vehicle, ofwel LEV. Vanwege hun compacte formaat, lichte bouw en duurzame aandrijving zijn ze zeer geschikt om problemen rondom uitstoot en bereikbaarheid op te lossen. Beperkte kennis over de beschikbaarheid, toepassingsmogelijkheden en regelgeving zorgt ervoor dat de toepassing van dit type voertuig achterblijft bij het potentieel. Een maatregel die veel wordt gehanteerd om duurzaamheid en bereikbaarheid te garanderen is deelmobiliteit. Het delen van voertuigen zorgt voor minder verkeersoverlast en zorgt ervoor dat mensen alternatieven kiezen voor hun eigen auto. Zeker in deze coronacrisis blijkt deelmobiliteit een aangenaam alternatief voor het openbaar vervoer. Deelvervoer wordt echter veelal verpakt in bestaande auto’s, terwijl deze daar niet per definitie geschikt voor zijn. LEV’s hebben de potentie om een goed alternatief te bieden voor bestaande deelauto’s, maar ook voor voertuigen die vanwege hun formaat, uitstoot of geluid niet passen in leefbare woongebieden. Op basis van een opgestelde kennisagenda verzamelt het Kenniscentrum voor LEV kennis en informatie over LEV’s en delen. Het helpt overheden, marktpartijen en gebruikers kennis te vergaren over LEV en het delen ervan. Zo geeft het Kenniscentrum inzicht in het ware potentieel van deze voertuigcategorie.