İnsan vücudu ile elektromanyetik dalgaların etkileşimi, dokuların ve hücrelerin dielektrik özellikleri gibi faktörlerin yanı sıra diğer etkenler tarafından da şekillenir. Mikrodalga hipertermi ve mikrodalga görüntüleme uygulamalarında, deney ortamı ölçüm düzeneklerinde simülasyon sonuçlarını doğrulamak için doku taklit eden materyallere ihtiyaç vardır. Bu çalışmada hipertermi uygulamalarında kullanılmak üzere kadın memelerine ait bazı doku taklit materyallerinin karakterizasyonu sunulmuştur. Karakterize edilen doku taklit malzemelerinin maliyeti ucuz ve üretim aşamaları kolaydır. Deri, kas, meme yağı ve kanserli dokular ISM bandı 434 MHz'de önerilmektedir. The interaction of electromagnetic waves with the human body is determined by the dielectric properties of tissues and cells along with other considerations. The complex dielectric properties of the materials are very important for the interaction of the electromagnetic waves within the human body. In microwave hyperthermia and microwave imaging applications, there is a need of tissue mimicking materials to validate the simulation results in in vitro measurement setups. In this paper, we presented the characterization of some tissue materials belonging to female breast to be used for hyperthermia applications. The characterized tissue mimicking materials are inexpensive and have simple recipes that are easy to formulate. Skin, muscle, breast fat and cancerous tissues are proposed at ISM band 434 MHz.
According to the International Civil Aviation Organization, the world aviation air traffic has grown by an average yearly rate of 5% over the last thirty years, until the devastating downturn brought on by the COVID crisis of 2020. Regardless of the current situation, there are still a number of issues and challenges that the industry is confronted with, not the least of which are related to sustainability, the conversion to electrical usage, the challenge of increasing propulsion efficiency in conventional propulsion, the digital transformation of the entire ecosystem, etc. In response, system developers and researchers in the field are working on a number of key technologies and methodologies to solve some of these issues. The Sustainable Aviation Research Society (SARES), a global organization that seeks to encourage research in this area and helps disseminate knowledge via conferences and symposia, has been organizing meetings to promote sustainable aviation over the five years. Three of these are the International Symposium on Sustainable Aviation (ISSA), International Symposium on Electric Aviation and Autonomous Systems (ISEAS), and the International Symposium on Aircraft Technology, MRO, and Operations (ISATECH).
Synthetic fibers, mainly polyethylene terephthalate (PET), polyamide (PA), polyacrylonitrile (PAN) and polypropylene (PP), are the most widely used polymers in the textile industry. These fibers surpass the production of natural fibers with a market share of 54.4%. The advantages of these fibers are their high modulus and strength, stiffness, stretch or elasticity, wrinkle and abrasion resistances, relatively low cost, convenient processing, tailorable performance and easy recycling. The downside to synthetic fibers use are reduced wearing comfort, build-up of electrostatic charge, the tendency to pill, difficulties in finishing, poor soil release properties and low dyeability. These disadvantages are largely associated with their hydrophobic nature. To render their surfaces hydrophilic, various physical, chemical and bulk modification methods are employed to mimic the advantageous properties of their natural counterparts. This review is focused on the application of recent methods for the modification of synthetic textiles using physical methods (corona discharge, plasma, laser, electron beam and neutron irradiations), chemical methods (ozone-gas treatment, supercritical carbon dioxide technique, vapor deposition, surface grafting, enzymatic modification, sol-gel technique, layer-by-layer deposition of nano-materials, micro-encapsulation method and treatment with different reagents) and bulk modification methods by blending polymers with different compounds in extrusion to absorb different colorants. Nowadays, the bulk and surface functionalization of synthetic fibers for various applications is considered as one of the best methods for modern textile finishing processes (Tomasino, 1992). This last stage of textile processing has employed new routes to demonstrate the great potential of nano-science and technology for this industry (Lewin, 2007). Combination of physical technologies and nano-science enhances the durability of textile materials against washing, ultraviolet radiation, friction, abrasion, tension and fading (Kirk–Othmer, 1998). European methods for application of new functional finishing materials must meet high ethical demands for environmental-friendly processing (Fourne, 1999). For this purpose the process of textile finishing is optimized by different researchers in new findings (Elices & Llorca, 2002). Application of inorganic and organic nano-particles have enhanced synthetic fibers attributes, such as softness, durability, breathability, water repellency, fire retardancy and antimicrobial properties (Franz, 2003; McIntyre, 2005; Xanthos, 2005). This review article gives an application overview of various physical and chemical methods of inorganic and organic structured material as potential modifying agents of textiles with emphasis on dyeability enhancements. The composition of synthetic fibers includes polypropylene (PP), polyethylene terephthalate (PET), polyamides (PA) or polyacrylonitrile (PAN). Synthetic fibers already hold a 54% market share in the fiber market. Of this market share, PET alone accounts for almost 50% of all fiber materials in 2008 (Gubitz & Cavaco-Paulo, 2008). Polypropylene, a major component for the nonwovens market accounts for 10% of the market share of both natural and synthetic fibers worldwide (INDA, 2008 and Aizenshtein, 2008). It is apparent that synthetic polymers have unique properties, such as high uniformity, mechanical strength and resistance to chemicals or abrasion. However, high hydrophobicity, the build-up of static charges, poor breathability, and resistant to finishing are undesirable properties of synthetic materials (Gubitz & Cavaco-Paulo, 2008). Synthetic textile fibers typically undergo a variety of pre-treatments before dyeing and printing is feasible. Compared to their cotton counterparts, fabrics made from synthetic fibers undergo mild scouring before dyeing. Nonetheless, these treatments still create undesirable process conditions wh
MULTIFILE
Mycelium biocomposites (MBCs) are a fairly new group of materials. MBCs are non-toxic and carbon-neutral cutting-edge circular materials obtained from agricultural residues and fungal mycelium, the vegetative part of fungi. Growing within days without complex processes, they offer versatile and effective solutions for diverse applications thanks to their customizable textures and characteristics achieved through controlled environmental conditions. This project involves a collaboration between MNEXT and First Circular Insulation (FC-I) to tackle challenges in MBC manufacturing, particularly the extended time and energy-intensive nature of the fungal incubation and drying phases. FC-I proposes an innovative deactivation method involving electrical discharges to expedite these processes, currently awaiting patent approval. However, a critical gap in scientific validation prompts the partnership with MNEXT, leveraging their expertise in mycelium research and MBCs. The research project centers on evaluating the efficacy of the innovative mycelium growth deactivation strategy proposed by FC-I. This one-year endeavor permits a thorough investigation, implementation, and validation of potential solutions, specifically targeting issues related to fungal regrowth and the preservation of sustained material properties. The collaboration synergizes academic and industrial expertise, with the dual purpose of achieving immediate project objectives and establishing a foundation for future advancements in mycelium materials.
Epoxy thermosets are extensively used as coatings, adhesives and in structural applications as they typically impart outstanding mechanical and electrical properties as well as chemical resistance. The currently used epoxy thermosets are produced from fossil-based non-recyclable materials. To be able to meet the circularity and sustainability goals set by the EU, this needs to change. Biobased epoxy thermosets from residual streams are considered a promising and urgently needed alternative to regular epoxy thermosets. The Cashew Nut industry could play a significant role in the development of these biobased epoxy thermosets. Global cashew nut production is about 4 million tons/year. The cashew nutshell is currently discarded as waste or used as an inefficient fuel, creating environmental issues. The cashew nutshell contains Cashew Nutshell Liquid (CNSL), which consists of the valuable chemical component cardanol. Cardanol can be used to produce biobased epoxy thermosets with balanced rigid-flexible performance. However, systematic studies about the production, properties, recyclability and commercial opportunities of the cardanol based epoxy thermosets are lacking. In this project consortium partners Avans, RUAS, Maastricht University, TU/e, Nuts2, Charcotec, NPSP, SABA, and Prokol jointly aim to answer the question: How can we develop sustainable and economically viable biobased epoxy thermosets and composites from cashew nutshell residue? First the pyrolysis process will be optimized for the effective production of CNSL. Next, the cardanol in the CNSL will be purified and modified to make the recyclable biobased epoxy thermoset. Finally, by adding biocarbon (which is also produced during the pyrolysis of cashew nutshell) to the biobased epoxy thermoset, a composite with enhanced mechanical, electrical, and thermal properties is expected to be obtained. The success of this project serves as a catalyst for the development of sustainable solutions in the thermoset industry and contribute to a sustainable application of cashew nut residue.
The EU Climate and Energy Policy Framework targets a 40% reduction in Greenhouse Gases (GHGs) emission by companies (when compared to 1990’s values) in 2030 [1]. Preparing for that future, many companies are working to reach climate neutrality in 2030. For water and wastewater treatment plants aeration processes could represent up to 70% of the whole energy consumption of the plant. Thus, a process which must be carefully evaluated if climate neutrality is a target. VortOx is an alternative to reduce power consumption in aeration processes. It is structured to test the applicability of geometrically constrained vortices in a hyperbolic funnel (aka “Schauberger”- funnel) as an innovative aeration technique for this industry. Recent investigations have shown that such systems allow an average of 12x more oxygen transfer coefficients (KLa) than that of comparable methods like air jets or impellers [10]. However, the system has a relatively small hydraulic retention time (HRT), which compromises its standard oxygen transfer ratio (SOTR). Additionally, so far, the system has only been tested in pilot (lab) scale. Vortox will tackle both challenges. Firstly, it will test geometry and flow adaptations to increase HRT keeping the same KLa levels. And secondly, all will be done using a real scale hyperbolic funnel and real effluent from Leeuwarden’s wastewater treatment plant demo-site. If proven feasible, Vortox can be a large step towards climate neutral water and wastewater treatment systems.