This report focuses on the feasibility of the power-to-ammonia concept. Power-to-ammonia uses produced excess renewable electricity to electrolyze water, and then to react the obtained hydrogen with nitrogen, which is obtained through air separation, to produce ammonia. This process may be used as a “balancing load” to consume excess electricity on the grid and maintain grid stability. The product, ammonia, plays the role of a chemical storage option for excess renewable energy. This excess energy in the form of ammonia can be stored for long periods of time using mature technologies and an existing global infrastructure, and can further be used either as a fuel or a chemical commodity. Ammonia has a higher energy density than hydrogen; it is easier to store and transport than hydrogen, and it is much easier to liquefy than methane, and offers an energy chain with low carbon emissions.The objective of this study is to analyze technical, institutional and economic aspects of power-to-ammonia and the usage of ammonia as a flexible energy carrier.
Lean Production (LP) can be regarded as a design approach in search of a theoretical foundation. In this paper we show that Lowlands’ Sociotechnical Design Theory (STSL) could function as such a foundation. To reach this goal, we first describe STSL as a system theoretical reformulation of Original Sociotechnical Theory (OSTS). Then, we introduce the Toyota Production System as the origin of LP and the challenge it poses for the academic field of organization design. This academic field should (1) assess LP’s success, (2) generalize it by embedding it in more abstract concepts and theories in order to be able to (3) re-specify it for different manufacturing and non-manufacturing contexts. Next, we give an exposition of STSL as a structural design approach based on developments in system theory. At last, we reformulate lean production in STSL terms and so show that LP is a subcase within the more general theory of STSL. We discuss the merits of both approaches and clarify some misunderstandings of lean both outside and inside the lean community. Embedding LP in the more general language of STSL should enable us to discover similarities and differences, to start a process of mutual learning, to integrate diverse design approaches in a theory of organizational design and to add content to redesign proposals of for example the health care system as proposed by Porter and Teisberg (2006) and Christensen et al. (2009). We quote extensively from the lean literature (to convince our sociotechnical friends) and embed both STSL and LP in the broader literature on organization design. We hope this adds a new perspective to the one given in the Operations Management literature on LP. Again, mutual learning is the goal.
Abstract written for an poster presentation at the EBA conference in Alkmaar. The flexibility of biogas makes it a very capable load balancer within decentralized smart energy systems. However, within this context the sustainability of biogas production is not fully understood. What is needed is a tool for analyzing the ustainability of biogas production pathways. The main goal, of this research is to design a transparent flexible planning tool capable determining the sustainability of decentralized biogas production chains. This insight will help in designing a tailor-made biogas production chain for a specific geographic location, increasing the effectiveness and sustainability of biogas as a renewable resource.
Horticulture crops and plants use only a limited part of the solar spectrum for their growth, the photosynthetically active radiation (PAR); even within PAR, different spectral regions have different functionality for plant growth, and so different light spectra are used to influence different properties of the plant, such as leaves, fruiting, longer stems and other plant properties. Artificial lighting, typically with LEDs, has been used to provide these specified spectra per plant, defined by their light recipe. This light is called steering light. While the natural sunlight provides a much more sustainable and abundant form of energy, however, the solar spectrum is not tuned towards specific plant needs. In this project, we capitalize on recent breakthroughs in nanoscience to optimally shape the solar spectrum, and produce a spectrally selective steering light, i.e. convert the energy of the entire solar spectrum into a spectrum most useful for agriculture and plant growth to utilize the sustainable solar energy to its fullest, and save on artificial lighting and electricity. We will take advantage of the developed light recipes and create a sustainable alternative to LED steering light, using nanomaterials to optimally shape the natural sunlight spectrum, while maintaining the increased yields. As a proof of concept, we are targeting the compactness of ornamental plants and seek to steer the plants’ growth to reduce leaf extension and thus be more valuable. To realize this project the Peter Schall group at the UvA leads this effort together with the university spinout, SolarFoil, whose expertise lies in the development of spectral conversion layers for horticulture. Renolit - a plastic manufacturer and Chemtrix, expert in flow synthesis, provide expertise and technical support to scale the foil, while Ludvig-Svensson, a pioneer in greenhouse climate screens, provides the desired light specifications and tests the foil in a controlled setting.
In the course of the “energie transitie” hydrogen is likely to become a very important energy carrier. The production of hydrogen (and oxygen) by water electrolysis using electricity from sun or wind is the only sustainable option. Water electrolysis is a well-developed technique, however the production costs of hydrogen by electrolysis are still more expensive than the conventional (not sustainable) production by steam reforming. One challenge towards the large scale application of water electrolysis is the fabrication of stable and cheap (noble metal free) electrodes. In this project we propose to develop fabrication methods for working electrodes and membrane electrode stack (MEAs) that can be used to implement new (noble metal free) electrocatalysts in water electrolysers.
The growing energy demand and environmental impact of traditional sources highlight the need for sustainable solutions. Hydrogen produced through water electrolysis, is a flexible and clean energy carrier capable of addressing large-electricity storage needs of the renewable but intermittent energy sources. Among various technologies, Proton Exchange Membrane Water Electrolysis (PEMWE) stands out for its efficiency and rapid response, making it ideal for grid stabilization. In its core, PEMWEs are composed of membrane electrode assemblies (MEA), which consist of a proton-conducting membrane sandwiched between two catalyst-coated electrodes, forming a single PEMWE cell unit. Despite the high efficiency and low emissions, a principal drawback of PEMWE is the capital cost due to high loading of precious metal catalysts and protective coatings. Traditional MEA catalyst coating methods are complex, inefficient, and costly to scale. To circumvent these challenges, VSParticle developed a technology for nanoparticle film production using spark ablation, which generates nanoparticles through high-voltage discharges between electrodes followed by an impaction printing module. However, the absence of liquids poses challenges, such as integrating polymeric solutions (e.g., Nafion®) for uniform, thicker catalyst coatings. Electrohydrodynamic atomization (EHDA) stands out as a promising technique thanks to its strong electric fields used to generate micro- and nanometric droplets with a narrow size distribution. Co-axial EHDA, a variation of this technique, utilizes two concentric needles to spray different fluids simultaneously.The ESPRESSO-NANO project combines co-axial EHDA with spark ablation to improve catalyst uniformity and performance at the nanometer scale by integrating electrosprayed ionomer nanoparticles with dry metal nanoparticles, ensuring better distribution of the catalyst within the nanoporous layer. This novel approach streamlines numerous steps in traditional synthesis and electrocatalyst film production which will address material waste and energy consumption, while simultaneously improve the electrochemical efficiency of PEMWEs, offering a sustainable solution to the global energy crisis.