Lean Production (LP) can be regarded as a design approach in search of a theoretical foundation. In this paper we show that Lowlands’ Sociotechnical Design Theory (STSL) could function as such a foundation. To reach this goal, we first describe STSL as a system theoretical reformulation of Original Sociotechnical Theory (OSTS). Then, we introduce the Toyota Production System as the origin of LP and the challenge it poses for the academic field of organization design. This academic field should (1) assess LP’s success, (2) generalize it by embedding it in more abstract concepts and theories in order to be able to (3) re-specify it for different manufacturing and non-manufacturing contexts. Next, we give an exposition of STSL as a structural design approach based on developments in system theory. At last, we reformulate lean production in STSL terms and so show that LP is a subcase within the more general theory of STSL. We discuss the merits of both approaches and clarify some misunderstandings of lean both outside and inside the lean community. Embedding LP in the more general language of STSL should enable us to discover similarities and differences, to start a process of mutual learning, to integrate diverse design approaches in a theory of organizational design and to add content to redesign proposals of for example the health care system as proposed by Porter and Teisberg (2006) and Christensen et al. (2009). We quote extensively from the lean literature (to convince our sociotechnical friends) and embed both STSL and LP in the broader literature on organization design. We hope this adds a new perspective to the one given in the Operations Management literature on LP. Again, mutual learning is the goal.
Power to methane provides a solution to a couple of two problems: unbalanced production and demand of wind plus solar power electricity and the low methane content of biogas by storing electricity via hydrogen into methane gas using carbon dioxide from biogas and methanogenic bacteria. The four-year project is performed by a consortium of three research institutes and five companies. In WP1 the-state-of- the-art of scientific knowledge on P2M technology is reviewed and evaluated.
Abstract written for an poster presentation at the EBA conference in Alkmaar. The flexibility of biogas makes it a very capable load balancer within decentralized smart energy systems. However, within this context the sustainability of biogas production is not fully understood. What is needed is a tool for analyzing the ustainability of biogas production pathways. The main goal, of this research is to design a transparent flexible planning tool capable determining the sustainability of decentralized biogas production chains. This insight will help in designing a tailor-made biogas production chain for a specific geographic location, increasing the effectiveness and sustainability of biogas as a renewable resource.
Horticulture crops and plants use only a limited part of the solar spectrum for their growth, the photosynthetically active radiation (PAR); even within PAR, different spectral regions have different functionality for plant growth, and so different light spectra are used to influence different properties of the plant, such as leaves, fruiting, longer stems and other plant properties. Artificial lighting, typically with LEDs, has been used to provide these specified spectra per plant, defined by their light recipe. This light is called steering light. While the natural sunlight provides a much more sustainable and abundant form of energy, however, the solar spectrum is not tuned towards specific plant needs. In this project, we capitalize on recent breakthroughs in nanoscience to optimally shape the solar spectrum, and produce a spectrally selective steering light, i.e. convert the energy of the entire solar spectrum into a spectrum most useful for agriculture and plant growth to utilize the sustainable solar energy to its fullest, and save on artificial lighting and electricity. We will take advantage of the developed light recipes and create a sustainable alternative to LED steering light, using nanomaterials to optimally shape the natural sunlight spectrum, while maintaining the increased yields. As a proof of concept, we are targeting the compactness of ornamental plants and seek to steer the plants’ growth to reduce leaf extension and thus be more valuable. To realize this project the Peter Schall group at the UvA leads this effort together with the university spinout, SolarFoil, whose expertise lies in the development of spectral conversion layers for horticulture. Renolit - a plastic manufacturer and Chemtrix, expert in flow synthesis, provide expertise and technical support to scale the foil, while Ludvig-Svensson, a pioneer in greenhouse climate screens, provides the desired light specifications and tests the foil in a controlled setting.
In the course of the “energie transitie” hydrogen is likely to become a very important energy carrier. The production of hydrogen (and oxygen) by water electrolysis using electricity from sun or wind is the only sustainable option. Water electrolysis is a well-developed technique, however the production costs of hydrogen by electrolysis are still more expensive than the conventional (not sustainable) production by steam reforming. One challenge towards the large scale application of water electrolysis is the fabrication of stable and cheap (noble metal free) electrodes. In this project we propose to develop fabrication methods for working electrodes and membrane electrode stack (MEAs) that can be used to implement new (noble metal free) electrocatalysts in water electrolysers.
Positive Energy Districts (PEDs) can play an important part in the energy transition by providing a year-round net positive energy balance in urban areas. In creating PEDs, new challenges emerge for decision-makers in government, businesses and for the public. This proposal aims to provide replicable strategies for improving the process of creating PEDs with a particular emphasis on stakeholder engagement, and to create replicable innovative business models for flexible energy production, consumption and storage. The project will involve stakeholders from different backgrounds by collaborating with the province, municipalities, network operators, housing associations, businesses and academia to ensure covering all necessary interests and mobilise support for the PED agenda. Two demo sites are part of the consortium to implement the lessons learnt and to bring new insights from practice to the findings of the project work packages. These are 1), Zwette VI, part of the city of Leeuwarden (NL), where local electricity congestion causes delays in building homes and small industries. And 2) Aalborg East (DK), a mixed-use neighbourhood with well-established partnerships between local stakeholders, seeking to implement green energy solutions with ambitions of moving towards net-zero emissions.