New technologies or approaches are being widely developed and proposed to be deployed in real energy systems to improve desired objectives; however, supporting decision making processes to select best solutions in terms of performance and efficiently following cost-benefit analysis require some sort of scientific evidence based tools. These tools should be reliable, robust, and capable of demonstrating the behaviour and impact of newly developed devices or algorithms in different pre- defined scenarios. Therefore, new approaches and technologies need to be tested and verified using a safe laboratory test environment.This report is about the development and realisation of some major tools and reliable methods to calculate risks and opportunities for integrating of new energy resources into the European electricity grid. Hanze University Groningen and Politecnico di Torino worked together within the STORE&GO project sharing laboratories, knowledge, hardware facilities and researchers for the realisation of the characterisation and mathematical modelling of renewable resources. Needed to realize a stable and reliable environment for remote physical hardware in the loop simulations.For this realisation we started with the local characterisation of a PV-Field and a PEM electrolyser at Entrance Groningen by logging and measuring the electric behaviour and specific device parameters to integrate and convert these into working mathematical models of a PV-Field and electrolyser prosumer. After testing and evaluating these models by comparing the results with the real-time measurements, these test and modelling is also realised from the remote laboratory in Torino. To achieve dynamical physical hardware we also realised dynamic mathematical model(s) with real-time functionality to interact directly with the remote electrolyser. To connect both the laboratories with full duplex communication functionalities between physical hardware and models we have also realized a network which is able to share network resources on both local and remote sites.
The Power to Flex project aims to promote the development of storage possibilities from sustainable energy sources. Hydrogen is opted to be a feasible energy carrier, which can also be stored for prolonged times without further losses and can be transformed into electricity and heat when needed. Producing hydrogen from electrolysis processes has a low CO2 footprint, however the efficiency at both the system, stack and cell level still increases due to further research and development.Electrolysis is conventionally performed with direct current, of which the energy is usually supplied from the grid. Rectifiers are necessary to provide the energy source for electrolysis, which unfortunately waste some of the efficiency, albeit becoming more efficient. Although it is known that distortions, harmonics and ripple, in the current supply can cause decreased performance of the electrolysis, a fundamental understanding is often not provided in published research. Controlled modulation of the electrolysis process can however form a possibility to enhance the performance of electrolysis
Decentralised renewable energy production in the form of fuels or electricity can have large scale deployment in future energy systems, but the feasibility needs to be assessed. The novelty of this paper is in the design and implementation of a mixed integer linear programming optimisation model to minimise the net present cost of decentralised hydrogen production for different energy demands on neighbourhood urban scale, while simultaneously adhering to European Union targets on greenhouse gas emission reductions. The energy system configurations optimised were assumed to possibly consist of a variable number or size of wind turbines, solar photovoltaics, grey grid electricity usage, battery storage, electrolyser, and hydrogen storage. The demands served are hydrogen for heating and mobility, and electricity for the households. A hydrogen residential heating project currently being developed in Hoogeveen, The Netherlands, served as a case study. Six scenarios were compared, each taking one or multiple energy demand services into question. For each scenario the levelised cost of hydrogen was calculated. The lowest levelised cost of hydrogen was found for the combined heating and mobility scenario: 8.36 €/kg for heating and 9.83 €/kg for mobility. The results support potential cost reductions of combined demand patterns of different energy services. A sensitivity analysis showed a strong influence of electrolyser efficiency, wind turbine parameters, and emission reduction factor on levelised cost. Wind energy was strongly preferred because of the lower cost and the low greenhouse gas emissions, compared to solar photovoltaics and grid electricity. Increasing electrolyser efficiency and greenhouse gas emission reduction of the used technologies deserve further research.
In the course of the “energie transitie” hydrogen is likely to become a very important energy carrier. The production of hydrogen (and oxygen) by water electrolysis using electricity from sun or wind is the only sustainable option. Water electrolysis is a well-developed technique, however the production costs of hydrogen by electrolysis are still more expensive than the conventional (not sustainable) production by steam reforming. One challenge towards the large scale application of water electrolysis is the fabrication of stable and cheap (noble metal free) electrodes. In this project we propose to develop fabrication methods for working electrodes and membrane electrode stack (MEAs) that can be used to implement new (noble metal free) electrocatalysts in water electrolysers.
In Gelderland at industriepark Kleefsewaard, a prominent knowledge hub for hydrogen technology has been developed, featuring key industry players and research groups contributing to innovative and cost-effective hydrogen technologies. However, the region faces a challenge in the lack of available test equipment for hydrogen innovations. In Anion Exchange Membrane (AEM) technology, a route to follow is to create hydrogen more efficiently with stacks that can operate under high pressure (50 bar – 200 bar). This results in compact hydrogen storage. Research must be done to understand crossover effects which become more apparent at these high pressure conditions. The overall goal is to design a Balanced of Plant (BOP) system, incorporating Process Flow Diagram (PFD) and Piping & Instrumentation Diagram (P&ID) elements, alongside hydrogen purification systems and gas-liquid separators, for a test setup operating AEM stacks at 200 bar. De Nooij Stainless contributes by designing and fabricating a gas liquid separator, addressing challenges such as compatibility, elevated temperatures, and hydrogen safety. ON2Quest collaborates in supporting the design of a hydrogen purification system and the Balance of Plant (BoP), ensuring flexibility for testing future stacks and hydrogen purification components. HyET E-Trol specializes in high pressure (up to 200 bar) AEM electrolyser stacks and is responsible for providing problem statements and engineering challenges related to the (Balanced of Plant) BoP of AEM systems, and contributes in solving them. Subsequent projects will feature test sequences centered on other stacks, allowing for testing stacks from other companies. The resulting framework will provide a foundation for ongoing advancements, with contributions from each partner playing a crucial role in achieving the project's goals.
Production of hydrogen from renewable power sources requires dynamic operation of electrolysers. A dedicated research activity is proposed to explore and study the impact of variable operation on electrolyser performance and the electricity grid. In addition optimal control strategies will be developed with the goal to improve overall operational efficiency. It is expected that by applying advanced control strategies 2 to 3% operational efficiency gain can be achieved. The research proposed in this project is aimed to explore, validate and demonstrate this potential efficiency gain on the PEM unit.