The decomposition of a body is influenced by burial conditions, making it crucial to understand the impact of different conditions for accurate grave detection. Geophysical techniques using drones have gained popularity in locating clandestine graves, offering non-invasive methods for detecting surface and subsurface irregularities. Ground-penetrating radar (GPR) is an effective technology for identifying potential grave locations without disturbance. This research aimed to prototype a drone system integrating GPR to assist in grave localization and to develop software for data management. Initial experiments compared GPR with other technologies, demonstrating its valuable applicability. It is suitable for various decomposition stages and soil types, although certain soil compositions have limitations. The research used the DJI M600 Pro drone and a drone-based GPR system enhanced by the real-time kinematic (RTK) global positioning system (GPS) for precision and autonomy. Tests with simulated graves and cadavers validated the system’s performance, evaluating optimal altitude, speed, and obstacle avoidance techniques. Furthermore, global and local planning algorithms ensured efficient and obstacle-free flight paths. The results highlighted the potential of the drone-based GPR system in locating clandestine graves while minimizing disturbance, contributing to the development of effective tools for forensic investigations and crime scene analysis.
MULTIFILE
This report was produced within the framework of the RAAK PRP project ‘Veiligheid op de werkvloer’. Personal protective equipment (PPE) is used on a daily basis by millions of people all over the EU, voluntarily or as a result of EU legislation. In this report we deal specifically with the textile/garment aspects of PPE. In this context we must consider the fact that PPE encompasses a huge area with hundreds of different applications of materials and systems tuned to specific needs;from a materials point of view it represents a complex area due to the large diversity of labour conditions. Textiles and clothing represent an area where PPE is an important area of attention. On a global scale it is an area of much research. Safety and comfort are becoming more and more important and these aspects must be in balance. Uncomfortable systems will not be used and put safe working at risk. Thus there is a continuous need for technological innovation to improve the effectiveness of PPE systems. Specialization and specific combinations aimed at use under well-defined conditions contributes to finding a good balance between comfort and safety. The design of products, taking into account the individual needs represent an area of intensive research: Safety directed ‘fashion design’.The ultimate goal is the development of proactive systems by which workers (but capital goods as well) are optimally protected. There is also a lot of attention for maintenance and cleaning since protective functions may deteriorate as a result of cleaning processes. Another important point is standardization because producers need directions for product development and supply of goods. In our overview we make a distinction between static and dynamic systems. Static systems provide passive protection, simply by being a part of an equipment that separates the worker from the danger zone. Dynamic systems are more ‘intelligent’ because these can react to stimuli and subsequently can take action. These dynamic systems use sensors, communication technology and actuators. From this research the following may be concluded: 1. Safety is obtained by choice of materials for a textile construction, including the use of coatings with special properties, application of specific additives and he use of special designed fibre shapes. 2. The architecture and ultimate construction and the combinations with other materials result in products that respond adequately. This is of great importance because of the balance comfort – safety. But a lot can be improved in this respect. 3. Insight in human behaviour, ambient intelligence and systems technology will lead to new routes for product development and a more active approach and higher levels of safety on the work floor. Consequently there is a lot of research going on that is aimed at improved materials and systems. Also due to the enormous research area of smart textiles a lot of development is aimed at the integration of new technology for application in PPE. This results in complex products that enhance both passive and active safety. Especially the commissioners, government and industry, must pay a lot of attention to specifying the required properties that a product should meet under the specific conditions. This has a cost aspect as well because production volumes are usually not that large if for small groups of products specific demands are defined. We expect that through the technology that is being developed in the scope of mass customization production technologies will be developed that allows production at acceptable cost, but still aimed at products that have specific properties for unique application areas. Purchasing is now being practiced through large procurements. We must than consider the fact that specification takes place on the basis of functionality. In that case we should move away from the current cost focus but the attention should shift towards the life cycle
MULTIFILE
With a market demand for low cost, easy to produce, flexible and portable applications in healthcare, energy, biomedical or electronics markets, large research programs are initiated to develop new technologies to provide this demand with new innovative ideas. One of these fast developing technologies is organic printed electronics. As the term printed electronics implies, functional materials are printed via, e.g. inkjet, flexo or gravure printing techniques, on to a substrate material. Applications are, among others, organic light emitting diodes (OLED), sensors and Lab-on-a-chip devices. For all these applications, in some way, the interaction of fluids with the substrate is of great importance. The most used substrate materials for these low-cost devices are (coated) paper or plastic. Plastic substrates have a relatively low surface energy which frequently leads to poor wetting and/or poor adhesion of the fluids on the substrates during printing and/ or post-processing. Plasma technology has had a long history in treating materials in order to improve wetting or promote adhesion. The µPlasma patterning tool described in this thesis combines a digital inkjet printing platform with an atmospheric dielectric barrier discharge plasma tool. Thus enabling selective and local plasma treatment, at atmospheric pressure, of substrates without the use of any masking materials. In this thesis, we show that dependent on the gas composition the substrate surface can either be functionalized, thus increasing its surface energy, or material can be deposited on the surface, lowering its surface energy. Through XPS and ATR-FTIR analysis of the treated (polymer) substrate surfaces, chemical modification of the surface structure was confirmed. The chemical modification and wetting properties of the treated substrates remained present for at least one month after storage. Localized changes in wettability through µPlasma patterning were obtained with a resolution of 300µm. Next to the control of wettability of an ink on a substrate in printed electronics is the interaction of ink droplets with themselves of importance. In printing applications, coalescence of droplets is standard practice as consecutive droplets are printed onto, or close to each other. Understanding the behaviour of these droplets upon coalescence is therefore important, especially when the ink droplets are of different composition and/or volume. For droplets of equal volume, it was found that dye transport across the coalescence bridge could be fully described by diffusion only. This is as expected, as due to the droplet symmetry on either side of the bridge, the convective flows towards the bridge are of equal size but opposite in direction. For droplets of unequal volume, the symmetry across the bridge is no longer present. Experimental analysis of these merging droplets show that in the early stages of coalescence a convective flow from the small to large droplet is present. Also, a smaller convective flow of shorter duration from the large into the small droplet was identified. The origin of this flow might be due to the presence of vortices along the interface of the bridge, due to the strong transverse flow to open the bridge. To conclude, three potential applications were showcased. In the first application we used µPlasma patterning to create hydrophilic patterns on hydrophobic dodecyl-trichlorosilane (DTS) covered glass. Capillaries for a Lab-on-a-chip device were successfully created by placing two µPlasma patterned glass slides on top of each other separated by scotch tape. In the second application we showcased the production of a RFID tag via inkjet printing. Functional RFID-tags on paper were created via inkjet printing of silver nanoparticle ink connected to an integrated circuit. The optimal operating frequency of the produced tags is in the range of 860-865 MHz, making them usable for the European market, although the small working range of 1 m needs further improvement. Lastly, we showed the production of a chemresistor based gas sensor. In house synthesised polyemeraldine salt (PANi) was coated by hand on top of inkjet printed silver electrodes. The sensor proved to be equally sensitive to ethanol and water vapour, reducing its selectivity in detecting changes in gas composition.